复制链接
克隆策略

    {"description":"实验创建于2017/11/15","graph":{"edges":[{"to_node_id":"-316:inputs","from_node_id":"-210:data"},{"to_node_id":"-403:inputs","from_node_id":"-210:data"},{"to_node_id":"-14834:inputs","from_node_id":"-218:data"},{"to_node_id":"-316:outputs","from_node_id":"-259:data"},{"to_node_id":"-14841:inputs","from_node_id":"-14806:data"},{"to_node_id":"-14806:inputs","from_node_id":"-14834:data"},{"to_node_id":"-259:inputs","from_node_id":"-14841:data"},{"to_node_id":"-408:inputs","from_node_id":"-403:data"},{"to_node_id":"-446:inputs","from_node_id":"-408:data"},{"to_node_id":"-218:inputs","from_node_id":"-446:data"}],"nodes":[{"node_id":"-210","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"50,5","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-210"}],"output_ports":[{"name":"data","node_id":"-210"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-218","module_id":"BigQuantSpace.dl_layer_lstm.dl_layer_lstm-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_activation","value":"hard_sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_initializer","value":"Orthogonal","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Ones","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"unit_forget_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"recurrent_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"recurrent_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_recurrent_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"dropout","value":"0","type":"Literal","bound_global_parameter":null},{"name":"recurrent_dropout","value":0,"type":"Literal","bound_global_parameter":null},{"name":"return_sequences","value":"False","type":"Literal","bound_global_parameter":null},{"name":"implementation","value":"1","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-218"}],"output_ports":[{"name":"data","node_id":"-218"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-316","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-316"},{"name":"outputs","node_id":"-316"}],"output_ports":[{"name":"data","node_id":"-316"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-259","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"sigmoid","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-259"}],"output_ports":[{"name":"data","node_id":"-259"}],"cacheable":false,"seq_num":9,"comment":"","comment_collapsed":true},{"node_id":"-14806","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"32","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"tanh","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14806"}],"output_ports":[{"name":"data","node_id":"-14806"}],"cacheable":false,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-14834","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.2","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14834"}],"output_ports":[{"name":"data","node_id":"-14834"}],"cacheable":false,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-14841","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.2","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-14841"}],"output_ports":[{"name":"data","node_id":"-14841"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true},{"node_id":"-403","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"50,5,1","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-403"}],"output_ports":[{"name":"data","node_id":"-403"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-408","module_id":"BigQuantSpace.dl_layer_conv2d.dl_layer_conv2d-v1","parameters":[{"name":"filters","value":"32","type":"Literal","bound_global_parameter":null},{"name":"kernel_size","value":"3,5","type":"Literal","bound_global_parameter":null},{"name":"strides","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"padding","value":"valid","type":"Literal","bound_global_parameter":null},{"name":"data_format","value":"channels_last","type":"Literal","bound_global_parameter":null},{"name":"dilation_rate","value":"1,1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-408"}],"output_ports":[{"name":"data","node_id":"-408"}],"cacheable":false,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-446","module_id":"BigQuantSpace.dl_layer_reshape.dl_layer_reshape-v1","parameters":[{"name":"target_shape","value":"48,32","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-446"}],"output_ports":[{"name":"data","node_id":"-446"}],"cacheable":false,"seq_num":15,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-210' Position='22.903091430664062,-312.6371154785156,200,200'/><node_position Node='-218' Position='280,67,200,200'/><node_position Node='-316' Position='85.42475891113281,495.72576904296875,200,200'/><node_position Node='-259' Position='281,387,200,200'/><node_position Node='-14806' Position='279,213,200,200'/><node_position Node='-14834' Position='279,146,200,200'/><node_position Node='-14841' Position='280,301,200,200'/><node_position Node='-403' Position='279,-194,200,200'/><node_position Node='-408' Position='280,-106,200,200'/><node_position Node='-446' Position='280,-23,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [1]:
    # 本代码由可视化策略环境自动生成 2021年12月10日 19:33
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    m3 = M.dl_layer_input.v1(
        shape='50,5',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m13 = M.dl_layer_reshape.v1(
        inputs=m3.data,
        target_shape='50,5,1',
        name=''
    )
    
    m14 = M.dl_layer_conv2d.v1(
        inputs=m13.data,
        filters=32,
        kernel_size='3,5',
        strides='1,1',
        padding='valid',
        data_format='channels_last',
        dilation_rate='1,1',
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m15 = M.dl_layer_reshape.v1(
        inputs=m14.data,
        target_shape='48,32',
        name=''
    )
    
    m4 = M.dl_layer_lstm.v1(
        inputs=m15.data,
        units=32,
        activation='tanh',
        recurrent_activation='hard_sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        recurrent_initializer='Orthogonal',
        bias_initializer='Ones',
        unit_forget_bias=True,
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        recurrent_regularizer='None',
        recurrent_regularizer_l1=0,
        recurrent_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        recurrent_constraint='None',
        bias_constraint='None',
        dropout=0,
        recurrent_dropout=0,
        return_sequences=False,
        implementation='1',
        name=''
    )
    
    m11 = M.dl_layer_dropout.v1(
        inputs=m4.data,
        rate=0.2,
        noise_shape='',
        name=''
    )
    
    m10 = M.dl_layer_dense.v1(
        inputs=m11.data,
        units=32,
        activation='tanh',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m12 = M.dl_layer_dropout.v1(
        inputs=m10.data,
        rate=0.2,
        noise_shape='',
        name=''
    )
    
    m9 = M.dl_layer_dense.v1(
        inputs=m12.data,
        units=1,
        activation='sigmoid',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m5 = M.dl_model_init.v1(
        inputs=m3.data,
        outputs=m9.data
    )
    
    In [3]:
    m5.data.read()
    
    Out[3]:
    'backend: tensorflow\nclass_name: Functional\nconfig:\n  input_layers:\n  - - L0\n    - 0\n    - 0\n  layers:\n  - class_name: InputLayer\n    config:\n      batch_input_shape: !!python/tuple\n      - null\n      - 50\n      - 5\n      dtype: float32\n      name: L0\n      ragged: false\n      sparse: false\n    inbound_nodes: []\n    name: L0\n  - class_name: Reshape\n    config:\n      dtype: float32\n      name: reshape\n      target_shape: !!python/tuple\n      - 50\n      - 5\n      - 1\n      trainable: true\n    inbound_nodes:\n    - - - L0\n        - 0\n        - 0\n        - {}\n    name: reshape\n  - class_name: Conv2D\n    config:\n      activation: relu\n      activity_regularizer: null\n      bias_constraint: null\n      bias_initializer:\n        class_name: Zeros\n        config: {}\n      bias_regularizer: null\n      data_format: channels_last\n      dilation_rate: !!python/tuple\n      - 1\n      - 1\n      dtype: float32\n      filters: 32\n      groups: 1\n      kernel_constraint: null\n      kernel_initializer:\n        class_name: GlorotUniform\n        config:\n          seed: null\n      kernel_regularizer: null\n      kernel_size: !!python/tuple\n      - 3\n      - 5\n      name: conv2d\n      padding: valid\n      strides: !!python/tuple\n      - 1\n      - 1\n      trainable: true\n      use_bias: true\n    inbound_nodes:\n    - - - reshape\n        - 0\n        - 0\n        - {}\n    name: conv2d\n  - class_name: Reshape\n    config:\n      dtype: float32\n      name: reshape_1\n      target_shape: !!python/tuple\n      - 48\n      - 32\n      trainable: true\n    inbound_nodes:\n    - - - conv2d\n        - 0\n        - 0\n        - {}\n    name: reshape_1\n  - class_name: LSTM\n    config:\n      activation: tanh\n      activity_regularizer: null\n      bias_constraint: null\n      bias_initializer:\n        class_name: Ones\n        config: {}\n      bias_regularizer: null\n      dropout: 0.0\n      dtype: float32\n      go_backwards: false\n      implementation: 1\n      kernel_constraint: null\n      kernel_initializer:\n        class_name: GlorotUniform\n        config:\n          seed: null\n      kernel_regularizer: null\n      name: lstm\n      recurrent_activation: hard_sigmoid\n      recurrent_constraint: null\n      recurrent_dropout: 0.0\n      recurrent_initializer:\n        class_name: Orthogonal\n        config:\n          gain: 1.0\n          seed: null\n      recurrent_regularizer: null\n      return_sequences: false\n      return_state: false\n      stateful: false\n      time_major: false\n      trainable: true\n      unit_forget_bias: true\n      units: 32\n      unroll: false\n      use_bias: true\n    inbound_nodes:\n    - - - reshape_1\n        - 0\n        - 0\n        - {}\n    name: lstm\n  - class_name: Dropout\n    config:\n      dtype: float32\n      name: dropout\n      noise_shape: null\n      rate: 0.2\n      seed: null\n      trainable: true\n    inbound_nodes:\n    - - - lstm\n        - 0\n        - 0\n        - {}\n    name: dropout\n  - class_name: Dense\n    config:\n      activation: tanh\n      activity_regularizer: null\n      bias_constraint: null\n      bias_initializer:\n        class_name: Zeros\n        config: {}\n      bias_regularizer: null\n      dtype: float32\n      kernel_constraint: null\n      kernel_initializer:\n        class_name: GlorotUniform\n        config:\n          seed: null\n      kernel_regularizer: null\n      name: dense\n      trainable: true\n      units: 32\n      use_bias: true\n    inbound_nodes:\n    - - - dropout\n        - 0\n        - 0\n        - {}\n    name: dense\n  - class_name: Dropout\n    config:\n      dtype: float32\n      name: dropout_1\n      noise_shape: null\n      rate: 0.2\n      seed: null\n      trainable: true\n    inbound_nodes:\n    - - - dense\n        - 0\n        - 0\n        - {}\n    name: dropout_1\n  - class_name: Dense\n    config:\n      activation: sigmoid\n      activity_regularizer: null\n      bias_constraint: null\n      bias_initializer:\n        class_name: Zeros\n        config: {}\n      bias_regularizer: null\n      dtype: float32\n      kernel_constraint: null\n      kernel_initializer:\n        class_name: GlorotUniform\n        config:\n          seed: null\n      kernel_regularizer: null\n      name: dense_1\n      trainable: true\n      units: 1\n      use_bias: true\n    inbound_nodes:\n    - - - dropout_1\n        - 0\n        - 0\n        - {}\n    name: dense_1\n  name: BigQuantDL\n  output_layers:\n  - - dense_1\n    - 0\n    - 0\nkeras_version: 2.4.0\n'