{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"-215:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"DestinationInputPortId":"-215:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-222:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-231:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-238:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-118:features","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"DestinationInputPortId":"-165:input_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"DestinationInputPortId":"-968:user_factor_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-5255:options_data","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"DestinationInputPortId":"-231:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-5255:instruments","SourceOutputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"DestinationInputPortId":"-222:input_data","SourceOutputPortId":"-215:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","SourceOutputPortId":"-222:data"},{"DestinationInputPortId":"-238:input_data","SourceOutputPortId":"-231:data"},{"DestinationInputPortId":"-136:input_data","SourceOutputPortId":"-238:data"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","SourceOutputPortId":"-118:model"},{"DestinationInputPortId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","SourceOutputPortId":"-136:data"},{"DestinationInputPortId":"-968:features","SourceOutputPortId":"-989:data"},{"DestinationInputPortId":"-118:training_ds","SourceOutputPortId":"-165:data"}],"ModuleNodes":[{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2010-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","ModuleId":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","ModuleParameters":[{"Name":"label_expr","Value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"000300.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na_label","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"cast_label_int","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","ModuleId":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","ModuleParameters":[{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"model","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"OutputPortsInternal":[{"Name":"predictions","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null},{"Name":"m_lazy_run","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":"交易日期"},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"预测数据,用于回测和模拟","CommentCollapsed":false},{"Id":"-215","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-215"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-215"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-215","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":15,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-222","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-222"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-222"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-222","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":16,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-231","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-231"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-231"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-231","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":17,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-238","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-238"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-238"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-238","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":18,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-118","ModuleId":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","ModuleParameters":[{"Name":"learning_algorithm","Value":"排序","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_leaves","Value":30,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"minimum_docs_per_leaf","Value":1000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"number_of_trees","Value":20,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"learning_rate","Value":0.1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_bins","Value":1023,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"feature_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_row_fraction","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"ndcg_discount_base","Value":1,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"m_lazy_run","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"training_ds","NodeId":"-118"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-118"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"test_ds","NodeId":"-118"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"base_model","NodeId":"-118"}],"OutputPortsInternal":[{"Name":"model","NodeId":"-118","OutputType":null},{"Name":"feature_gains","NodeId":"-118","OutputType":null},{"Name":"m_lazy_run","NodeId":"-118","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-136","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-136"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-136"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-136","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":10,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-968","ModuleId":"BigQuantSpace.factorlens.factorlens-v1","ModuleParameters":[{"Name":"title","Value":"因子分析: {factor_name}","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"start_date","Value":"2015-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2017-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"rebalance_period","Value":22,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"delay_rebalance_days","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"rebalance_price","Value":"close_0","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"stock_pool","Value":"全市场","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"quantile_count","Value":5,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"commission_rate","Value":0.0016,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"returns_calculation_method","Value":"累乘","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"无","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_price_limit_stocks","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_st_stocks","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_new_stocks","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"normalization","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"neutralization","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E8%A1%8C%E4%B8%9A%22%2C%22displayValue%22%3A%22%E8%A1%8C%E4%B8%9A%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%B8%82%E5%80%BC%22%2C%22displayValue%22%3A%22%E5%B8%82%E5%80%BC%22%2C%22selected%22%3Atrue%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"metrics","Value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E8%A1%A8%E7%8E%B0%E6%A6%82%E8%A7%88%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E8%A1%A8%E7%8E%B0%E6%A6%82%E8%A7%88%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E5%88%86%E5%B8%83%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E5%88%86%E5%B8%83%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E8%A1%8C%E4%B8%9A%E5%88%86%E5%B8%83%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E8%A1%8C%E4%B8%9A%E5%88%86%E5%B8%83%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E5%B8%82%E5%80%BC%E5%88%86%E5%B8%83%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E5%B8%82%E5%80%BC%E5%88%86%E5%B8%83%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22IC%E5%88%86%E6%9E%90%22%2C%22displayValue%22%3A%22IC%E5%88%86%E6%9E%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B9%B0%E5%85%A5%E4%BF%A1%E5%8F%B7%E9%87%8D%E5%90%88%E5%88%86%E6%9E%90%22%2C%22displayValue%22%3A%22%E4%B9%B0%E5%85%A5%E4%BF%A1%E5%8F%B7%E9%87%8D%E5%90%88%E5%88%86%E6%9E%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E4%BC%B0%E5%80%BC%E5%88%86%E6%9E%90%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E4%BC%B0%E5%80%BC%E5%88%86%E6%9E%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E6%8B%A5%E6%8C%A4%E5%BA%A6%E5%88%86%E6%9E%90%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E6%8B%A5%E6%8C%A4%E5%BA%A6%E5%88%86%E6%9E%90%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%9B%A0%E5%AD%90%E5%80%BC%E6%9C%80%E5%A4%A7%2F%E6%9C%80%E5%B0%8F%E8%82%A1%E7%A5%A8%22%2C%22displayValue%22%3A%22%E5%9B%A0%E5%AD%90%E5%80%BC%E6%9C%80%E5%A4%A7%2F%E6%9C%80%E5%B0%8F%E8%82%A1%E7%A5%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%9B%A0%E5%AD%90%E5%80%BC%22%2C%22displayValue%22%3A%22%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%9B%A0%E5%AD%90%E5%80%BC%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%A4%9A%E5%9B%A0%E5%AD%90%E7%9B%B8%E5%85%B3%E6%80%A7%E5%88%86%E6%9E%90%22%2C%22displayValue%22%3A%22%E5%A4%9A%E5%9B%A0%E5%AD%90%E7%9B%B8%E5%85%B3%E6%80%A7%E5%88%86%E6%9E%90%22%2C%22selected%22%3Atrue%7D%5D%7D","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"factor_coverage","Value":0.5,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-968"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"user_factor_data","NodeId":"-968"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-968","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-989","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"score\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-989"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-989","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":11,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-5255","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-5255"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-5255"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-5255"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-5255"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-5255"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-5255","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-165","ModuleId":"BigQuantSpace.dropnan.dropnan-v2","ModuleParameters":[],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-165"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-165"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-165","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":5,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='211,64,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='70,183,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='765,21,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='249,375,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='906,647,200,200'/><NodePosition Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><NodePosition Node='-215' Position='381,188,200,200'/><NodePosition Node='-222' Position='385,280,200,200'/><NodePosition Node='-231' Position='1078,236,200,200'/><NodePosition Node='-238' Position='1081,327,200,200'/><NodePosition Node='-118' Position='638,561,200,200'/><NodePosition Node='-136' Position='1078,418,200,200'/><NodePosition Node='-968' Position='694,782,200,200'/><NodePosition Node='-989' Position='557,647,200,200'/><NodePosition Node='-5255' Position='1019,824,200,200'/><NodePosition Node='-165' Position='308,498,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2021-01-28 16:11:14.254476] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-01-28 16:11:14.271883] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.273971] INFO: moduleinvoker: instruments.v2 运行完成[0.019505s].
[2021-01-28 16:11:14.279793] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2021-01-28 16:11:14.288190] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.290582] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.010796s].
[2021-01-28 16:11:14.294369] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-01-28 16:11:14.298791] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.300184] INFO: moduleinvoker: input_features.v1 运行完成[0.005813s].
[2021-01-28 16:11:14.313609] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-01-28 16:11:14.320279] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.322092] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.008494s].
[2021-01-28 16:11:14.323736] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-01-28 16:11:14.331985] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.333576] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.009839s].
[2021-01-28 16:11:14.335870] INFO: moduleinvoker: join.v3 开始运行..
[2021-01-28 16:11:14.405876] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.407809] INFO: moduleinvoker: join.v3 运行完成[0.071929s].
[2021-01-28 16:11:14.410018] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-01-28 16:11:14.422027] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.423642] INFO: moduleinvoker: dropnan.v2 运行完成[0.013617s].
[2021-01-28 16:11:14.426760] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2021-01-28 16:11:14.442507] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.570750] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[0.143984s].
[2021-01-28 16:11:14.572874] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-01-28 16:11:14.624678] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.626404] INFO: moduleinvoker: instruments.v2 运行完成[0.053529s].
[2021-01-28 16:11:14.632581] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-01-28 16:11:14.661832] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.663521] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.030939s].
[2021-01-28 16:11:14.665774] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-01-28 16:11:14.734506] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.736538] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.070751s].
[2021-01-28 16:11:14.739222] INFO: moduleinvoker: dropnan.v2 开始运行..
[2021-01-28 16:11:14.752080] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.753853] INFO: moduleinvoker: dropnan.v2 运行完成[0.014621s].
[2021-01-28 16:11:14.756247] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2021-01-28 16:11:14.876554] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:14.882053] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[0.125799s].
[2021-01-28 16:11:14.948675] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-01-28 16:11:14.962907] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:16.823497] INFO: moduleinvoker: backtest.v8 运行完成[1.874812s].
[2021-01-28 16:11:16.824809] INFO: moduleinvoker: trade.v4 运行完成[1.940386s].
[2021-01-28 16:11:16.826484] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-01-28 16:11:16.833012] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:16.834552] INFO: moduleinvoker: input_features.v1 运行完成[0.008061s].
[2021-01-28 16:11:16.836867] INFO: moduleinvoker: factorlens.v1 开始运行..
[2021-01-28 16:11:16.842857] INFO: moduleinvoker: 命中缓存
[2021-01-28 16:11:16.970529] INFO: moduleinvoker: factorlens.v1 运行完成[0.133653s].
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-dafd81f629d84e4ab41e362b6fdd1438"}/bigcharts-data-end
- 收益率308.49%
- 年化收益率106.83%
- 基准收益率-6.33%
- 阿尔法0.8
- 贝塔0.94
- 夏普比率1.88
- 胜率0.62
- 盈亏比0.74
- 收益波动率41.79%
- 信息比率0.17
- 最大回撤47.66%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-36eea4e37998491392fc2b397f4ef65a"}/bigcharts-data-end
因子分析: score
{
"type": "factor-track",
"data": {
"exprs": ["score"],
"options": {"BacktestInterval": ["2015-01-01", "2017-01-01"], "Benchmark": "none", "StockPool": "all", "DropSTStocks": 1, "DropPriceLimitStocks": 1, "DropNewStocks": 1, "QuantileCount": 5, "CommissionRates": 0.0016, "Normalization": 1, "Neutralization": "industry,size", "RebalancePrice": "close_0", "DelayRebalanceDays": 0, "RebalancePeriod": 22, "ReturnsCalculationMethod": "cumprod", "FactorCoverage": 0.5, "_HASH": "810c32a12fc7daa877688be3f70140d5"}
}
}
|
累计收益 |
近1年收益 |
近3月收益 |
近1月收益 |
近1周收益 |
昨日收益 |
最大回撤 |
盈亏比 |
胜率 |
夏普比率 |
收益波动率 |
最小分位 |
-28.61% |
-32.54% |
-7.49% |
-7.19% |
-0.62% |
-0.13% |
56.21% |
0.72 |
0.57 |
-0.32 |
39.82% |
最大分位 |
59.97% |
-11.05% |
-1.91% |
-5.96% |
-0.24% |
-0.06% |
38.57% |
0.80 |
0.59 |
0.72 |
40.15% |
多空组合 |
-33.45% |
-13.00% |
-2.85% |
-0.63% |
-0.19% |
-0.03% |
33.45% |
0.62 |
0.39 |
-4.85 |
5.03% |
股票名称 |
股票代码 |
因子值 |
柘中股份 |
002346.SZA |
-0.4259 |
中际装备 |
300308.SZA |
-0.3803 |
易事特 |
300376.SZA |
-0.3450 |
三全食品 |
002216.SZA |
-0.3350 |
多喜爱 |
002761.SZA |
-0.2975 |
中国国贸 |
600007.SHA |
-0.2580 |
闽东电力 |
000993.SZA |
-0.2567 |
环旭电子 |
601231.SHA |
-0.2453 |
华塑控股 |
000509.SZA |
-0.2438 |
太阳电缆 |
002300.SZA |
-0.2438 |
东方铁塔 |
002545.SZA |
-0.2438 |
焦作万方 |
000612.SZA |
-0.2400 |
巨力索具 |
002342.SZA |
-0.2372 |
福日电子 |
600203.SHA |
-0.2313 |
苏大维格 |
300331.SZA |
-0.2262 |
全信股份 |
300447.SZA |
-0.2251 |
开元仪器 |
300338.SZA |
-0.2165 |
新开普 |
300248.SZA |
-0.2150 |
博世科 |
300422.SZA |
-0.2133 |
中海达 |
300177.SZA |
-0.2133 |
股票名称 |
股票代码 |
因子值 |
天润曲轴 |
002283.SZA |
1.1895 |
新晨科技 |
300542.SZA |
1.2456 |
暴风集团 |
300431.SZA |
1.2461 |
微光股份 |
002801.SZA |
1.2975 |
华媒控股 |
000607.SZA |
1.3067 |
创新股份 |
002812.SZA |
1.3120 |
海虹控股 |
000503.SZA |
1.3263 |
邦宝益智 |
603398.SHA |
1.3874 |
华源包装 |
002787.SZA |
1.4337 |
东音股份 |
002793.SZA |
1.4589 |
川金诺 |
300505.SZA |
1.5263 |
金轮股份 |
002722.SZA |
1.5508 |
西藏城投 |
600773.SHA |
1.7015 |
明家联合 |
300242.SZA |
1.7180 |
世名科技 |
300522.SZA |
1.7258 |
科大国创 |
300520.SZA |
1.8230 |
熊猫金控 |
600599.SHA |
1.9648 |
先进数通 |
300541.SZA |
2.0487 |
今天国际 |
300532.SZA |
2.0744 |
通合科技 |
300491.SZA |
2.1003 |