{"Description":"实验创建于2017/8/26","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-145:input_data","SourceOutputPortId":"-135:data"},{"DestinationInputPortId":"-135:instruments","SourceOutputPortId":"-143:data"},{"DestinationInputPortId":"-58:instruments","SourceOutputPortId":"-143:data"},{"DestinationInputPortId":"-2750:instruments","SourceOutputPortId":"-143:data"},{"DestinationInputPortId":"-135:features","SourceOutputPortId":"-151:data"},{"DestinationInputPortId":"-135:user_functions","SourceOutputPortId":"-52:functions"},{"DestinationInputPortId":"-2766:data2","SourceOutputPortId":"-145:data"},{"DestinationInputPortId":"-145:features","SourceOutputPortId":"-62:data"},{"DestinationInputPortId":"-2750:features","SourceOutputPortId":"-2745:data"},{"DestinationInputPortId":"-2757:features","SourceOutputPortId":"-2745:data"},{"DestinationInputPortId":"-2757:input_data","SourceOutputPortId":"-2750:data"},{"DestinationInputPortId":"-2766:data1","SourceOutputPortId":"-2757:data"},{"DestinationInputPortId":"-58:options_data","SourceOutputPortId":"-2766:data"}],"ModuleNodes":[{"Id":"-135","ModuleId":"BigQuantSpace.feature_extractor_1m.feature_extractor_1m-v1","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":"90","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"workers","Value":"2","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"parallel_mode","Value":"测试","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"table_1m","Value":"level2_bar1m_CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-135"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-135"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"user_functions","NodeId":"-135"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-135","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":12,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-143","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2020-06-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2020-12-31","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"000001.SZA\n000002.SZA\n000005.SZA\n600519.SHA","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":"0","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-143"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-143","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":20,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-151","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"# 支持 np=numpy, pd=pandas, ta=talib, math 库,支持 pandas series 内建函数\n# _ 开始的表示中间变量,不会出现在最终结果中,可以用于中间复用计算结果,加快速度\n# 自定义表达式\n\nret5m = close.loc[145700] / close.loc[145200] -1 \nclose_ = close.loc[145700]\nvwap(close,volume)\nopen_ = open.loc[93100]\n\nmom1 = close.loc[103000]/close.loc[93100] - 1\nmom2 = close.loc[113000]/close.loc[103000] - 1\nmom3 = close.loc[140000]/close.loc[130100] - 1\nmom4 = close.loc[145700]/close.loc[140000] - 1\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-151"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-151","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":21,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-52","ModuleId":"BigQuantSpace.feature_extractor_user_function.feature_extractor_user_function-v1","ModuleParameters":[{"Name":"name","Value":"vwap","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"func","Value":"def bigquant_run(df, close, volume):\n vwap=(close*volume).sum()/volume.sum()\n return vwap\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_functions","NodeId":"-52"}],"OutputPortsInternal":[{"Name":"functions","NodeId":"-52","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":1,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-145","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-145"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-145"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-145","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"IsPartOfPartialRun":null,"Comment":"日频因子进行加工","CommentCollapsed":false},{"Id":"-62","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"mom0 = open_/close_.shift(1)\nma_mom1 = mean(mom1,22)\nma_mom2 = mean(mom2,22)\nma_mom3 = mean(mom3,22)\nma_mom4 = mean(mom4,22)\n \n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-62"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-62","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":4,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-58","ModuleId":"BigQuantSpace.trade.trade-v4","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"initialize","Value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.hold_days = 5\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"handle_data","Value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n # 1. 资金分配\n # 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金\n # 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)\n is_staging = context.trading_day_index < context.hold_days # 是否在建仓期间(前 hold_days 天)\n cash_avg = context.portfolio.portfolio_value / context.hold_days\n cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)\n cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n # 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按StockRanker预测的排序末位淘汰\n if not is_staging and cash_for_sell > 0:\n equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}\n instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(\n lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))\n # print('rank order for sell %s' % instruments)\n for instrument in instruments:\n context.order_target(context.symbol(instrument), 0)\n cash_for_sell -= positions[instrument]\n if cash_for_sell <= 0:\n break\n\n # 3. 生成买入订单:按StockRanker预测的排序,买入前面的stock_count只股票\n buy_cash_weights = context.stock_weights\n buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])\n max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument\n for i, instrument in enumerate(buy_instruments):\n cash = cash_for_buy * buy_cash_weights[i]\n if cash > max_cash_per_instrument - positions.get(instrument, 0):\n # 确保股票持仓量不会超过每次股票最大的占用资金量\n cash = max_cash_per_instrument - positions.get(instrument, 0)\n if cash > 0:\n context.order_value(context.symbol(instrument), cash)\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"prepare","Value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_trading_start","Value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"volume_limit","Value":0.025,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_buy","Value":"open","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"order_price_field_sell","Value":"close","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"capital_base","Value":1000000,"ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"auto_cancel_non_tradable_orders","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"data_frequency","Value":"daily","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"price_type","Value":"真实价格","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"product_type","Value":"股票","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"plot_charts","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"backtest_only","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"benchmark","Value":"","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-58"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"options_data","NodeId":"-58"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"history_ds","NodeId":"-58"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"benchmark_ds","NodeId":"-58"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"trading_calendar","NodeId":"-58"}],"OutputPortsInternal":[{"Name":"raw_perf","NodeId":"-58","OutputType":null}],"UsePreviousResults":false,"moduleIdForCode":3,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2745","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\nreturn_10\nreturn_20\navg_amount_0/avg_amount_5\navg_amount_5/avg_amount_20\nrank_avg_amount_0/rank_avg_amount_5\nrank_avg_amount_5/rank_avg_amount_10\nrank_return_0\nrank_return_5\nrank_return_10\nrank_return_0/rank_return_5\nrank_return_5/rank_return_10\npe_ttm_0\n","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-2745"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2745","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":6,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2750","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-2750"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-2750"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2750","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":7,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2757","ModuleId":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","ModuleParameters":[{"Name":"date_col","Value":"date","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_col","Value":"instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"drop_na","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"remove_extra_columns","Value":"True","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"user_functions","Value":"{}","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"input_data","NodeId":"-2757"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-2757"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2757","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":8,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true},{"Id":"-2766","ModuleId":"BigQuantSpace.join.join-v3","ModuleParameters":[{"Name":"on","Value":"date,instrument","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"how","Value":"inner","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"sort","Value":"False","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data1","NodeId":"-2766"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"data2","NodeId":"-2766"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-2766","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":9,"IsPartOfPartialRun":null,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-135' Position='-45,-612,200,200'/><NodePosition Node='-143' Position='-351,-796.8587036132812,200,200'/><NodePosition Node='-151' Position='-34,-824.4237670898438,200,200'/><NodePosition Node='-52' Position='275,-732,200,200'/><NodePosition Node='-145' Position='60,-496,200,200'/><NodePosition Node='-62' Position='328,-608,200,200'/><NodePosition Node='-58' Position='-176,-170.32908630371094,200,200'/><NodePosition Node='-2745' Position='-683,-800,200,200'/><NodePosition Node='-2750' Position='-619,-588,200,200'/><NodePosition Node='-2757' Position='-554,-444.8587341308594,200,200'/><NodePosition Node='-2766' Position='-398.1412658691406,-337.1412658691406,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
[2021-06-24 11:10:10.912917] INFO: moduleinvoker: instruments.v2 开始运行..
[2021-06-24 11:10:10.956231] INFO: moduleinvoker: instruments.v2 运行完成[0.043282s].
[2021-06-24 11:10:10.961157] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-24 11:10:10.968698] INFO: moduleinvoker: 命中缓存
[2021-06-24 11:10:10.971406] INFO: moduleinvoker: input_features.v1 运行完成[0.010261s].
[2021-06-24 11:10:10.976459] INFO: moduleinvoker: feature_extractor_user_function.v1 运行完成[0.00017s].
[2021-06-24 11:10:10.982535] INFO: moduleinvoker: feature_extractor_1m.v1 开始运行..
[2021-06-24 11:10:10.999263] INFO: 高频特征抽取-分钟到日频: 测试模式运行, ['000001.SZA', '000005.SZA', '600519.SHA']
[2021-06-24 11:10:11.001879] INFO: fe1m_utils: extract chunk 3 instruments, 8 features ..
[2021-06-24 11:10:11.003327] INFO: fe1m_utils: extract chunk 3 instruments, n_jobs=30=(20+40)/2, 并行=False ..
[2021-06-24 11:10:15.480741] INFO: fe1m_utils: extracted chunk 3/3 instruments, (618, 10).
[2021-06-24 11:10:15.615028] WARNING: 高频特征抽取-分钟到日频: no data found for {'000002.SZA'}
[2021-06-24 11:10:15.617027] INFO: 高频特征抽取-分钟到日频: extracted 3/4 instruments, (618, 10)
[2021-06-24 11:10:15.621767] INFO: moduleinvoker: feature_extractor_1m.v1 运行完成[4.63921s].
[2021-06-24 11:10:15.625906] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-24 11:10:15.638970] INFO: moduleinvoker: 命中缓存
[2021-06-24 11:10:15.641500] INFO: moduleinvoker: input_features.v1 运行完成[0.015593s].
[2021-06-24 11:10:15.646421] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-24 11:10:15.699394] INFO: derived_feature_extractor: 提取完成 mom0 = open_/close_.shift(1), 0.002s
[2021-06-24 11:10:15.707822] INFO: derived_feature_extractor: 提取完成 ma_mom1 = mean(mom1,22), 0.006s
[2021-06-24 11:10:15.715312] INFO: derived_feature_extractor: 提取完成 ma_mom2 = mean(mom2,22), 0.006s
[2021-06-24 11:10:15.720461] INFO: derived_feature_extractor: 提取完成 ma_mom3 = mean(mom3,22), 0.004s
[2021-06-24 11:10:15.728248] INFO: derived_feature_extractor: 提取完成 ma_mom4 = mean(mom4,22), 0.006s
[2021-06-24 11:10:15.787325] INFO: derived_feature_extractor: /data, 618
[2021-06-24 11:10:15.872485] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.22604s].
[2021-06-24 11:10:15.876931] INFO: moduleinvoker: input_features.v1 开始运行..
[2021-06-24 11:10:15.882562] INFO: moduleinvoker: 命中缓存
[2021-06-24 11:10:15.884453] INFO: moduleinvoker: input_features.v1 运行完成[0.00753s].
[2021-06-24 11:10:15.892576] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2021-06-24 11:10:17.864891] INFO: 基础特征抽取: 年份 2020, 特征行数=824
[2021-06-24 11:10:17.910180] INFO: 基础特征抽取: 总行数: 824
[2021-06-24 11:10:17.922213] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[2.029631s].
[2021-06-24 11:10:17.928252] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2021-06-24 11:10:18.000412] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.001s
[2021-06-24 11:10:18.003760] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.001s
[2021-06-24 11:10:18.007052] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.001s
[2021-06-24 11:10:18.009845] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.001s
[2021-06-24 11:10:18.013398] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.001s
[2021-06-24 11:10:18.016420] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.001s
[2021-06-24 11:10:18.090960] INFO: derived_feature_extractor: /y_2020, 824
[2021-06-24 11:10:18.175256] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.246986s].
[2021-06-24 11:10:18.180457] INFO: moduleinvoker: join.v3 开始运行..
[2021-06-24 11:10:18.308446] INFO: join: /data, 行数=555/555, 耗时=0.055297s
[2021-06-24 11:10:18.368127] INFO: join: 最终行数: 555
[2021-06-24 11:10:18.377204] INFO: moduleinvoker: join.v3 运行完成[0.196773s].
[2021-06-24 11:10:18.411944] INFO: moduleinvoker: backtest.v8 开始运行..
[2021-06-24 11:10:18.416838] INFO: backtest: biglearning backtest:V8.5.0
[2021-06-24 11:10:18.418166] INFO: backtest: product_type:stock by specified
[2021-06-24 11:10:18.802142] INFO: moduleinvoker: cached.v2 开始运行..
[2021-06-24 11:10:25.337683] INFO: backtest: 读取股票行情完成:120945
[2021-06-24 11:10:25.604908] INFO: moduleinvoker: cached.v2 运行完成[6.802816s].
[2021-06-24 11:10:25.818130] INFO: algo: TradingAlgorithm V1.8.3
[2021-06-24 11:10:26.053361] INFO: algo: trading transform...
[2021-06-24 11:10:27.359175] INFO: Performance: Simulated 146 trading days out of 146.
[2021-06-24 11:10:27.362665] INFO: Performance: first open: 2020-06-01 09:30:00+00:00
[2021-06-24 11:10:27.366435] INFO: Performance: last close: 2020-12-31 15:00:00+00:00
[2021-06-24 11:10:28.580296] INFO: moduleinvoker: backtest.v8 运行完成[10.168341s].
[2021-06-24 11:10:28.582611] INFO: moduleinvoker: trade.v4 运行完成[10.199106s].
- 收益率21.87%
- 年化收益率40.69%
- 基准收益率34.76%
- 阿尔法-0.03
- 贝塔0.73
- 夏普比率1.36
- 胜率0.53
- 盈亏比1.49
- 收益波动率25.34%
- 信息比率-0.05
- 最大回撤11.67%
bigcharts-data-start/{"__type":"tabs","__id":"bigchart-0ca6094104ba4eadb041b9a215a12038"}/bigcharts-data-end