A: 可以多分几类,也可以用连续值
Q: 1-3日追涨的关键因子一般可能会有哪些?老师建议哪些因子?
A:单一类型的因子不是关键,增量因子和模型是未来
# 本代码由可视化策略环境自动生成 2022年11月19日 13:35
# 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
# 回测引擎:初始化函数,只执行一次
def m19_initialize_bigquant_run(context):
# 加载预测数据
context.ranker_prediction = context.options['data'].read_df()
# 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
# 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
# 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
stock_count = 5
# 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
# 设置每只股票占用的最大资金比例
context.max_cash_per_instrument = 0.2
context.options['hold_days'] = 5
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
# 按日期过滤得到今日的预测数据
ranker_prediction = context.ranker_prediction[
context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
# 1. 资金分配
# 平均持仓时间是hold_days,每日都将买入股票,每日预期使用 1/hold_days 的资金
# 实际操作中,会存在一定的买入误差,所以在前hold_days天,等量使用资金;之后,尽量使用剩余资金(这里设置最多用等量的1.5倍)
is_staging = context.trading_day_index < context.options['hold_days'] # 是否在建仓期间(前 hold_days 天)
cash_avg = context.portfolio.portfolio_value / context.options['hold_days']
cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)
cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)
positions = {e.symbol: p.amount * p.last_sale_price
for e, p in context.portfolio.positions.items()}
# 2. 生成卖出订单:hold_days天之后才开始卖出;对持仓的股票,按机器学习算法预测的排序末位淘汰
if not is_staging and cash_for_sell > 0:
equities = {e.symbol: e for e, p in context.portfolio.positions.items()}
instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(
lambda x: x in equities)])))
for instrument in instruments:
context.order_target(context.symbol(instrument), 0)
cash_for_sell -= positions[instrument]
if cash_for_sell <= 0:
break
# 3. 生成买入订单:按机器学习算法预测的排序,买入前面的stock_count只股票
buy_cash_weights = context.stock_weights
buy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])
max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrument
for i, instrument in enumerate(buy_instruments):
cash = cash_for_buy * buy_cash_weights[i]
if cash > max_cash_per_instrument - positions.get(instrument, 0):
# 确保股票持仓量不会超过每次股票最大的占用资金量
cash = max_cash_per_instrument - positions.get(instrument, 0)
if cash > 0:
context.order_value(context.symbol(instrument), cash)
# 回测引擎:准备数据,只执行一次
def m19_prepare_bigquant_run(context):
pass
m1 = M.instruments.v2(
start_date='2018-01-01',
end_date='2020-12-31',
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m2 = M.advanced_auto_labeler.v2(
instruments=m1.data,
label_expr="""# #号开始的表示注释
# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
# 添加benchmark_前缀,可使用对应的benchmark数据
# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
shift(close, -5) / shift(open, -1)
# 极值处理:用1%和99%分位的值做clip
clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
# 将分数映射到分类,这里使用20个分类
all_wbins(label, 20)
# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
where(shift(high, -1) == shift(low, -1), NaN, label)
""",
start_date='',
end_date='',
benchmark='000300.HIX',
drop_na_label=True,
cast_label_int=True
)
m3 = M.input_features.v1(
features="""# #号开始的表示注释
# 多个特征,每行一个,可以包含基础特征和衍生特征
return_5
return_10
return_20
avg_amount_0/avg_amount_5
avg_amount_5/avg_amount_20
rank_avg_amount_0/rank_avg_amount_5
rank_avg_amount_5/rank_avg_amount_10
rank_return_0
rank_return_5
rank_return_10
rank_return_0/rank_return_5
rank_return_5/rank_return_10
pe_ttm_0
a = shift(close_0, -5) / shift(open_0, -1)
"""
)
m15 = M.general_feature_extractor.v7(
instruments=m1.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=90
)
m16 = M.derived_feature_extractor.v3(
input_data=m15.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m7 = M.join.v3(
data1=m2.data,
data2=m16.data,
on='date,instrument',
how='inner',
sort=False
)
m13 = M.dropnan.v1(
input_data=m7.data
)
m6 = M.stock_ranker_train.v6(
training_ds=m13.data,
features=m3.data,
learning_algorithm='排序',
number_of_leaves=30,
minimum_docs_per_leaf=1000,
number_of_trees=20,
learning_rate=0.1,
max_bins=1023,
feature_fraction=1,
data_row_fraction=1,
plot_charts=True,
ndcg_discount_base=1,
m_lazy_run=False
)
m9 = M.instruments.v2(
start_date=T.live_run_param('trading_date', '2021-01-01'),
end_date=T.live_run_param('trading_date', '2021-12-31'),
market='CN_STOCK_A',
instrument_list='',
max_count=0
)
m17 = M.general_feature_extractor.v7(
instruments=m9.data,
features=m3.data,
start_date='',
end_date='',
before_start_days=90
)
m18 = M.derived_feature_extractor.v3(
input_data=m17.data,
features=m3.data,
date_col='date',
instrument_col='instrument',
drop_na=False,
remove_extra_columns=False
)
m14 = M.dropnan.v1(
input_data=m18.data
)
m8 = M.stock_ranker_predict.v5(
model=m6.model,
data=m14.data,
m_lazy_run=False
)
m19 = M.trade.v4(
instruments=m9.data,
options_data=m8.predictions,
start_date='',
end_date='',
initialize=m19_initialize_bigquant_run,
handle_data=m19_handle_data_bigquant_run,
prepare=m19_prepare_bigquant_run,
volume_limit=0.025,
order_price_field_buy='open',
order_price_field_sell='close',
capital_base=1000000,
auto_cancel_non_tradable_orders=True,
data_frequency='daily',
price_type='真实价格',
product_type='股票',
plot_charts=True,
backtest_only=False,
benchmark='000300.HIX'
)
[2022-11-18 19:30:02.283077] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-18 19:30:02.304002] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:30:02.306811] INFO: moduleinvoker: instruments.v2 运行完成[0.023737s].
[2022-11-18 19:30:02.317258] INFO: moduleinvoker: advanced_auto_labeler.v2 开始运行..
[2022-11-18 19:30:02.343078] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:30:02.345135] INFO: moduleinvoker: advanced_auto_labeler.v2 运行完成[0.02791s].
[2022-11-18 19:30:02.350213] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-11-18 19:30:02.365540] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:30:02.368295] INFO: moduleinvoker: input_features.v1 运行完成[0.018025s].
[2022-11-18 19:30:02.403839] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-18 19:30:02.417140] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:30:02.419041] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.015224s].
[2022-11-18 19:30:02.426526] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-18 19:30:02.458869] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:30:02.460979] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[0.034448s].
[2022-11-18 19:30:02.470755] INFO: moduleinvoker: join.v3 开始运行..
[2022-11-18 19:30:02.493887] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:30:02.496021] INFO: moduleinvoker: join.v3 运行完成[0.025265s].
[2022-11-18 19:30:02.505058] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-11-18 19:30:03.370117] INFO: dropnan: /y_2017, 0/0
[2022-11-18 19:30:05.835492] INFO: dropnan: /y_2018, 811828/813508
[2022-11-18 19:30:08.683450] INFO: dropnan: /y_2019, 877946/881288
[2022-11-18 19:30:11.626666] INFO: dropnan: /y_2020, 911045/919362
[2022-11-18 19:30:11.766455] INFO: dropnan: 行数: 2600819/2614158
[2022-11-18 19:30:11.778689] INFO: moduleinvoker: dropnan.v1 运行完成[9.273621s].
[2022-11-18 19:30:11.789033] INFO: moduleinvoker: stock_ranker_train.v6 开始运行..
[2022-11-18 19:30:19.558741] INFO: StockRanker: 特征预处理 ..
[2022-11-18 19:30:24.555402] INFO: StockRanker: prepare data: training ..
[2022-11-18 19:30:29.404289] INFO: StockRanker: sort ..
[2022-11-18 19:31:11.198262] INFO: StockRanker训练: 5d361072 准备训练: 2600819 行数
[2022-11-18 19:31:11.200227] INFO: StockRanker训练: AI模型训练,将在2600819*14=3641.15万数据上对模型训练进行20轮迭代训练。预计将需要11~23分钟。请耐心等待。
[2022-11-18 19:31:11.454285] INFO: StockRanker训练: 正在训练 ..
[2022-11-18 19:31:11.530800] INFO: StockRanker训练: 任务状态: Pending
[2022-11-18 19:31:21.582450] INFO: StockRanker训练: 任务状态: Running
[2022-11-18 19:32:41.934315] INFO: StockRanker训练: 00:01:20.3724339, finished iteration 1
[2022-11-18 19:33:02.023867] INFO: StockRanker训练: 00:01:40.6273739, finished iteration 2
[2022-11-18 19:33:22.118643] INFO: StockRanker训练: 00:01:59.8155671, finished iteration 3
[2022-11-18 19:33:42.206582] INFO: StockRanker训练: 00:02:19.8083571, finished iteration 4
[2022-11-18 19:34:02.295340] INFO: StockRanker训练: 00:02:40.3908782, finished iteration 5
[2022-11-18 19:34:22.375973] INFO: StockRanker训练: 00:02:59.4057991, finished iteration 6
[2022-11-18 19:34:42.464987] INFO: StockRanker训练: 00:03:18.9621747, finished iteration 7
[2022-11-18 19:35:02.558900] INFO: StockRanker训练: 00:03:42.4083303, finished iteration 8
[2022-11-18 19:35:22.646809] INFO: StockRanker训练: 00:04:02.4119256, finished iteration 9
[2022-11-18 19:35:42.726954] INFO: StockRanker训练: 00:04:22.7631538, finished iteration 10
[2022-11-18 19:36:02.806297] INFO: StockRanker训练: 00:04:39.8952910, finished iteration 11
[2022-11-18 19:36:12.849308] INFO: StockRanker训练: 00:04:56.4225206, finished iteration 12
[2022-11-18 19:36:32.932902] INFO: StockRanker训练: 00:05:15.1055397, finished iteration 13
[2022-11-18 19:36:53.020075] INFO: StockRanker训练: 00:05:32.9941635, finished iteration 14
[2022-11-18 19:37:13.158346] INFO: StockRanker训练: 00:05:52.8774758, finished iteration 15
[2022-11-18 19:37:33.250660] INFO: StockRanker训练: 00:06:13.7811610, finished iteration 16
[2022-11-18 19:37:53.404888] INFO: StockRanker训练: 00:06:38.1974303, finished iteration 17
[2022-11-18 19:38:23.592874] INFO: StockRanker训练: 00:07:08.0879532, finished iteration 18
[2022-11-18 19:38:53.762761] INFO: StockRanker训练: 00:07:37.9421250, finished iteration 19
[2022-11-18 19:39:23.898329] INFO: StockRanker训练: 00:08:04.9899346, finished iteration 20
[2022-11-18 19:39:23.900211] INFO: StockRanker训练: 任务状态: Succeeded
[2022-11-18 19:39:24.139334] INFO: moduleinvoker: stock_ranker_train.v6 运行完成[552.350283s].
[2022-11-18 19:39:24.149893] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-11-18 19:39:24.159078] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:39:24.161841] INFO: moduleinvoker: instruments.v2 运行完成[0.011951s].
[2022-11-18 19:39:24.187858] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-11-18 19:39:24.198565] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:39:24.201369] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[0.013531s].
[2022-11-18 19:39:24.211943] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-11-18 19:39:26.972729] INFO: derived_feature_extractor: 提取完成 avg_amount_0/avg_amount_5, 0.005s
[2022-11-18 19:39:26.979136] INFO: derived_feature_extractor: 提取完成 avg_amount_5/avg_amount_20, 0.004s
[2022-11-18 19:39:26.983485] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_0/rank_avg_amount_5, 0.003s
[2022-11-18 19:39:26.987521] INFO: derived_feature_extractor: 提取完成 rank_avg_amount_5/rank_avg_amount_10, 0.003s
[2022-11-18 19:39:26.991775] INFO: derived_feature_extractor: 提取完成 rank_return_0/rank_return_5, 0.003s
[2022-11-18 19:39:26.996265] INFO: derived_feature_extractor: 提取完成 rank_return_5/rank_return_10, 0.003s
[2022-11-18 19:39:27.405652] INFO: derived_feature_extractor: 提取完成 a = shift(close_0, -5) / shift(open_0, -1), 0.408s
[2022-11-18 19:39:28.681015] INFO: derived_feature_extractor: /y_2020, 243745
[2022-11-18 19:39:30.896411] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-11-18 19:39:32.850540] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[8.638597s].
[2022-11-18 19:39:32.864822] INFO: moduleinvoker: dropnan.v1 开始运行..
[2022-11-18 19:39:34.096336] INFO: dropnan: /y_2020, 239876/243745
[2022-11-18 19:39:37.121041] INFO: dropnan: /y_2021, 1026364/1061527
[2022-11-18 19:39:37.232128] INFO: dropnan: 行数: 1266240/1305272
[2022-11-18 19:39:37.244047] INFO: moduleinvoker: dropnan.v1 运行完成[4.379235s].
[2022-11-18 19:39:37.253603] INFO: moduleinvoker: stock_ranker_predict.v5 开始运行..
[2022-11-18 19:39:38.564845] INFO: StockRanker预测: /y_2020 ..
[2022-11-18 19:39:41.070855] INFO: StockRanker预测: /y_2021 ..
[2022-11-18 19:39:43.800998] INFO: moduleinvoker: stock_ranker_predict.v5 运行完成[6.547382s].
[2022-11-18 19:39:43.880589] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-11-18 19:39:43.889426] INFO: backtest: biglearning backtest:V8.6.3
[2022-11-18 19:39:43.891422] INFO: backtest: product_type:stock by specified
[2022-11-18 19:39:44.010433] INFO: moduleinvoker: cached.v2 开始运行..
[2022-11-18 19:39:44.022975] INFO: moduleinvoker: 命中缓存
[2022-11-18 19:39:44.025975] INFO: moduleinvoker: cached.v2 运行完成[0.015547s].
[2022-11-18 19:39:55.860612] INFO: backtest: algo history_data=DataSource(7b59b5685475488ca970a344aee03d74T)
[2022-11-18 19:39:55.862403] INFO: algo: TradingAlgorithm V1.8.8
[2022-11-18 19:39:58.861741] INFO: algo: trading transform...
[2022-11-18 19:40:02.168354] INFO: algo: handle_splits get splits [dt:2021-04-30 00:00:00+00:00] [asset:Equity(5299 [000928.SZA]), ratio:0.9856998324394226]
[2022-11-18 19:40:02.170056] INFO: Position: position stock handle split[sid:5299, orig_amount:126600, new_amount:128436.0, orig_cost:7.880001541707889, new_cost:7.7673, ratio:0.9856998324394226, last_sale_price:9.650001525878906]
[2022-11-18 19:40:02.171678] INFO: Position: after split: PositionStock(asset:Equity(5299 [000928.SZA]), amount:128436.0, cost_basis:7.7673, last_sale_price:9.789999961853027)
[2022-11-18 19:40:02.173524] INFO: Position: returning cash: 6.4254
[2022-11-18 19:40:02.807477] INFO: algo: handle_splits get splits [dt:2021-05-27 00:00:00+00:00] [asset:Equity(548 [300390.SZA]), ratio:0.9965528249740601]
[2022-11-18 19:40:02.809773] INFO: Position: position stock handle split[sid:548, orig_amount:228700, new_amount:229491.0, orig_cost:29.591043214423546, new_cost:29.489, ratio:0.9965528249740601, last_sale_price:28.909997940063477]
[2022-11-18 19:40:02.811988] INFO: Position: after split: PositionStock(asset:Equity(548 [300390.SZA]), amount:229491.0, cost_basis:29.489, last_sale_price:29.010000228881836)
[2022-11-18 19:40:02.813967] INFO: Position: returning cash: 2.7746
[2022-11-18 19:40:02.863812] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(1956 [300191.SZA]), ratio:0.9989469051361084]
[2022-11-18 19:40:02.865909] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(1633 [300576.SZA]), ratio:0.8317152261734009]
[2022-11-18 19:40:02.868255] INFO: algo: handle_splits get splits [dt:2021-05-28 00:00:00+00:00] [asset:Equity(1913 [300615.SZA]), ratio:0.995159924030304]
[2022-11-18 19:40:02.870228] INFO: Position: position stock handle split[sid:1956, orig_amount:117100, new_amount:117223.0, orig_cost:18.451151447470057, new_cost:18.4317, ratio:0.9989469051361084, last_sale_price:18.970001220703125]
[2022-11-18 19:40:02.872131] INFO: Position: after split: PositionStock(asset:Equity(1956 [300191.SZA]), amount:117223.0, cost_basis:18.4317, last_sale_price:18.989999771118164)
[2022-11-18 19:40:02.873866] INFO: Position: returning cash: 8.4874
[2022-11-18 19:40:02.876049] INFO: Position: position stock handle split[sid:1633, orig_amount:141900, new_amount:170611.0, orig_cost:35.84424578181242, new_cost:29.8122, ratio:0.8317152261734009, last_sale_price:33.410003662109375]
[2022-11-18 19:40:02.877545] INFO: Position: after split: PositionStock(asset:Equity(1633 [300576.SZA]), amount:170611.0, cost_basis:29.8122, last_sale_price:40.17000198364258)
[2022-11-18 19:40:02.879324] INFO: Position: returning cash: 9.3816
[2022-11-18 19:40:02.976750] INFO: algo: handle_splits get splits [dt:2021-06-01 00:00:00+00:00] [asset:Equity(2885 [300709.SZA]), ratio:0.8289373517036438]
[2022-11-18 19:40:03.157558] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(5613 [300378.SZA]), ratio:0.994778037071228]
[2022-11-18 19:40:03.159586] INFO: algo: handle_splits get splits [dt:2021-06-08 00:00:00+00:00] [asset:Equity(5458 [300649.SZA]), ratio:0.9942448139190674]
[2022-11-18 19:40:03.161276] INFO: Position: position stock handle split[sid:5613, orig_amount:215900, new_amount:217033.0, orig_cost:18.371146100202278, new_cost:18.2752, ratio:0.994778037071228, last_sale_price:19.049999237060547]
[2022-11-18 19:40:03.162848] INFO: Position: after split: PositionStock(asset:Equity(5613 [300378.SZA]), amount:217033.0, cost_basis:18.2752, last_sale_price:19.149999618530273)
[2022-11-18 19:40:03.164187] INFO: Position: returning cash: 6.4781
[2022-11-18 19:40:03.165675] INFO: Position: position stock handle split[sid:5458, orig_amount:10400, new_amount:10460.0, orig_cost:13.960858314647645, new_cost:13.8805, ratio:0.9942448139190674, last_sale_price:13.820001602172852]
[2022-11-18 19:40:03.166965] INFO: Position: after split: PositionStock(asset:Equity(5458 [300649.SZA]), amount:10460.0, cost_basis:13.8805, last_sale_price:13.899998664855957)
[2022-11-18 19:40:03.168454] INFO: Position: returning cash: 2.7695
[2022-11-18 19:40:03.370471] INFO: algo: handle_splits get splits [dt:2021-06-16 00:00:00+00:00] [asset:Equity(1148 [300680.SZA]), ratio:0.7121211290359497]
[2022-11-18 19:40:03.372992] INFO: Position: position stock handle split[sid:1148, orig_amount:174400, new_amount:244902.0, orig_cost:29.001570980520253, new_cost:20.6526, ratio:0.7121211290359497, last_sale_price:22.55999755859375]
[2022-11-18 19:40:03.375414] INFO: Position: after split: PositionStock(asset:Equity(1148 [300680.SZA]), amount:244902.0, cost_basis:20.6526, last_sale_price:31.68000030517578)
[2022-11-18 19:40:03.377648] INFO: Position: returning cash: 3.5246
[2022-11-18 19:40:03.417127] INFO: algo: handle_splits get splits [dt:2021-06-17 00:00:00+00:00] [asset:Equity(5537 [300613.SZA]), ratio:0.6664592623710632]
[2022-11-18 19:40:03.419099] INFO: Position: position stock handle split[sid:5537, orig_amount:32400, new_amount:48615.0, orig_cost:135.10082216142206, new_cost:90.0392, ratio:0.6664592623710632, last_sale_price:107.13998413085938]
[2022-11-18 19:40:03.421162] INFO: Position: after split: PositionStock(asset:Equity(5537 [300613.SZA]), amount:48615.0, cost_basis:90.0392, last_sale_price:160.75999450683594)
[2022-11-18 19:40:03.422770] INFO: Position: returning cash: 13.3366
[2022-11-18 19:40:03.459204] INFO: algo: handle_splits get splits [dt:2021-06-18 00:00:00+00:00] [asset:Equity(3319 [600418.SHA]), ratio:0.9977194666862488]
[2022-11-18 19:40:03.461075] INFO: Position: position stock handle split[sid:3319, orig_amount:567100, new_amount:568396.0, orig_cost:8.660280838661627, new_cost:8.6405, ratio:0.9977194666862488, last_sale_price:8.75]
[2022-11-18 19:40:03.462856] INFO: Position: after split: PositionStock(asset:Equity(3319 [600418.SHA]), amount:568396.0, cost_basis:8.6405, last_sale_price:8.770000457763672)
[2022-11-18 19:40:03.464625] INFO: Position: returning cash: 2.1575
[2022-11-18 19:40:03.618568] INFO: algo: handle_splits get splits [dt:2021-06-24 00:00:00+00:00] [asset:Equity(1021 [600329.SHA]), ratio:0.9868996143341064]
[2022-11-18 19:40:03.743397] INFO: algo: handle_splits get splits [dt:2021-06-29 00:00:00+00:00] [asset:Equity(1627 [600586.SHA]), ratio:0.9966405034065247]
[2022-11-18 19:40:03.746334] INFO: Position: position stock handle split[sid:1627, orig_amount:857700, new_amount:860591.0, orig_cost:6.790194592848632, new_cost:6.7674, ratio:0.9966405034065247, last_sale_price:8.899999618530273]
[2022-11-18 19:40:03.748269] INFO: Position: after split: PositionStock(asset:Equity(1627 [600586.SHA]), amount:860591.0, cost_basis:6.7674, last_sale_price:8.930000305175781)
[2022-11-18 19:40:03.750692] INFO: Position: returning cash: 1.3621
[2022-11-18 19:40:03.994552] INFO: algo: handle_splits get splits [dt:2021-07-07 00:00:00+00:00] [asset:Equity(444 [300095.SZA]), ratio:0.9951029419898987]
[2022-11-18 19:40:03.996427] INFO: Position: position stock handle split[sid:444, orig_amount:642800, new_amount:645963.0, orig_cost:10.020625678560563, new_cost:9.9716, ratio:0.9951029419898987, last_sale_price:10.160000801086426]
[2022-11-18 19:40:03.998052] INFO: Position: after split: PositionStock(asset:Equity(444 [300095.SZA]), amount:645963.0, cost_basis:9.9716, last_sale_price:10.210000038146973)
[2022-11-18 19:40:03.999382] INFO: Position: returning cash: 3.2497
[2022-11-18 19:40:04.265595] WARNING: Performance: maybe_close_position no price for asset:Equity(4871 [002711.SZA]), field:price, dt:2021-07-15 15:00:00+00:00
[2022-11-18 19:40:04.312837] INFO: algo: handle_splits get splits [dt:2021-07-19 00:00:00+00:00] [asset:Equity(4632 [600196.SHA]), ratio:0.9941686987876892]
[2022-11-18 19:40:04.315090] INFO: Position: position stock handle split[sid:4632, orig_amount:212000, new_amount:213243.0, orig_cost:66.50006268907902, new_cost:66.1123, ratio:0.9941686987876892, last_sale_price:73.30999755859375]
[2022-11-18 19:40:04.316969] INFO: Position: after split: PositionStock(asset:Equity(4632 [600196.SHA]), amount:213243.0, cost_basis:66.1123, last_sale_price:73.73999786376953)
[2022-11-18 19:40:04.318829] INFO: Position: returning cash: 35.7023
[2022-11-18 19:40:04.481866] INFO: algo: handle_splits get splits [dt:2021-07-23 00:00:00+00:00] [asset:Equity(5175 [688086.SHA]), ratio:0.9933094382286072]
[2022-11-18 19:40:04.484469] INFO: Position: position stock handle split[sid:5175, orig_amount:56700, new_amount:57081.0, orig_cost:23.50146747765155, new_cost:23.3442, ratio:0.9933094382286072, last_sale_price:25.239992141723633]
[2022-11-18 19:40:04.486739] INFO: Position: after split: PositionStock(asset:Equity(5175 [688086.SHA]), amount:57081.0, cost_basis:23.3442, last_sale_price:25.40999984741211)
[2022-11-18 19:40:04.488764] INFO: Position: returning cash: 22.9695
[2022-11-18 19:40:05.122679] INFO: algo: handle_splits get splits [dt:2021-08-16 00:00:00+00:00] [asset:Equity(4199 [600048.SHA]), ratio:0.9392678737640381]
[2022-11-18 19:40:05.125631] INFO: Position: position stock handle split[sid:4199, orig_amount:2668400, new_amount:2840936.0, orig_cost:10.200227926164988, new_cost:9.5807, ratio:0.9392678737640381, last_sale_price:11.289999008178711]
[2022-11-18 19:40:05.128146] INFO: Position: after split: PositionStock(asset:Equity(4199 [600048.SHA]), amount:2840936.0, cost_basis:9.5807, last_sale_price:12.019999504089355)
[2022-11-18 19:40:05.130417] INFO: Position: returning cash: 1.007
[2022-11-18 19:40:05.283331] INFO: algo: handle_splits get splits [dt:2021-08-19 00:00:00+00:00] [asset:Equity(4778 [600764.SHA]), ratio:0.9889996647834778]
[2022-11-18 19:40:05.285526] INFO: Position: position stock handle split[sid:4778, orig_amount:93200, new_amount:94236.0, orig_cost:24.111505845658158, new_cost:23.8463, ratio:0.9889996647834778, last_sale_price:28.770000457763672]
[2022-11-18 19:40:05.287544] INFO: Position: after split: PositionStock(asset:Equity(4778 [600764.SHA]), amount:94236.0, cost_basis:23.8463, last_sale_price:29.09000015258789)
[2022-11-18 19:40:05.289546] INFO: Position: returning cash: 18.2566
[2022-11-18 19:40:06.861874] INFO: algo: handle_splits get splits [dt:2021-10-22 00:00:00+00:00] [asset:Equity(3683 [002270.SZA]), ratio:0.9825705289840698]
[2022-11-18 19:40:06.864648] INFO: Position: position stock handle split[sid:3683, orig_amount:2617200, new_amount:2663625.0, orig_cost:7.087187041366325, new_cost:6.9637, ratio:0.9825705289840698, last_sale_price:9.019997596740723]
[2022-11-18 19:40:06.866469] INFO: Position: after split: PositionStock(asset:Equity(3683 [002270.SZA]), amount:2663625.0, cost_basis:6.9637, last_sale_price:9.180000305175781)
[2022-11-18 19:40:06.868201] INFO: Position: returning cash: 5.2761
[2022-11-18 19:40:08.508729] INFO: algo: handle_splits get splits [dt:2021-12-08 00:00:00+00:00] [asset:Equity(295 [000959.SZA]), ratio:0.9856938123703003]
[2022-11-18 19:40:08.511059] INFO: Position: position stock handle split[sid:295, orig_amount:2030000, new_amount:2059463.0, orig_cost:5.76035973912805, new_cost:5.678, ratio:0.9856938123703003, last_sale_price:6.8899993896484375]
[2022-11-18 19:40:08.512956] INFO: Position: after split: PositionStock(asset:Equity(295 [000959.SZA]), amount:2059463.0, cost_basis:5.678, last_sale_price:6.989999771118164)
[2022-11-18 19:40:08.514412] INFO: Position: returning cash: 0.448
[2022-11-18 19:40:09.387591] INFO: Performance: Simulated 243 trading days out of 243.
[2022-11-18 19:40:09.389945] INFO: Performance: first open: 2021-01-04 09:30:00+00:00
[2022-11-18 19:40:09.391925] INFO: Performance: last close: 2021-12-31 15:00:00+00:00
[2022-11-18 19:40:16.091909] INFO: moduleinvoker: backtest.v8 运行完成[32.211323s].
[2022-11-18 19:40:16.094459] INFO: moduleinvoker: trade.v4 运行完成[32.277592s].
df = m7.data.read()
df2 = df[df.date=='2019-01-02']
def fuc(x):
name = x.label.values[0]
mean = x.a.mean()
print(name,":",round(mean,4))
df2[['date','instrument','a','label']].groupby('label').apply(fuc)