复制链接
克隆策略
In [36]:
m6.sorted_data.read()
Out[36]:
date instrument return_5
0 2021-12-22 002319.SZA 0.763372
1 2021-12-22 831445.BJA 0.773495
2 2021-12-22 600367.SHA 0.789092
3 2021-12-22 002607.SZA 0.800199
4 2021-12-22 603335.SHA 0.817362
... ... ... ...
58370 2022-01-10 600941.SHA NaN
58371 2022-01-10 603176.SHA NaN
58372 2022-01-10 688176.SHA NaN
58373 2022-01-10 688262.SHA NaN
58374 2022-01-10 871245.BJA NaN

58375 rows × 3 columns

In [38]:
m7.data_1
Out[38]:
date instrument return_5 num buy_condition
0 2021-12-22 002319.SZA 0.763372 0 1.0
1 2021-12-22 831445.BJA 0.773495 1 1.0
2 2021-12-22 600367.SHA 0.789092 2 1.0
3 2021-12-22 002607.SZA 0.800199 3 1.0
4 2021-12-22 603335.SHA 0.817362 4 1.0
... ... ... ... ... ...
58370 2022-01-10 600941.SHA NaN 4382 0.0
58371 2022-01-10 603176.SHA NaN 4383 0.0
58372 2022-01-10 688176.SHA NaN 4384 0.0
58373 2022-01-10 688262.SHA NaN 4385 0.0
58374 2022-01-10 871245.BJA NaN 4386 0.0

58375 rows × 5 columns

    {"description":"实验创建于2023/1/5","graph":{"edges":[{"to_node_id":"-374:instruments","from_node_id":"-349:data"},{"to_node_id":"-384:instruments","from_node_id":"-349:data"},{"to_node_id":"-374:features","from_node_id":"-357:data"},{"to_node_id":"-595:input_data","from_node_id":"-374:data"},{"to_node_id":"-331:input_1","from_node_id":"-405:sorted_data"},{"to_node_id":"-405:input_ds","from_node_id":"-595:data"},{"to_node_id":"-384:options_data","from_node_id":"-331:data_1"}],"nodes":[{"node_id":"-349","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-1-1","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-1-10","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"# 002820.SZA\n# 600420.SHA\n# 002421.SZA\n# 601001.SHA\n# 601011.SHA\n# 601015.SHA\n# 600490.SHA\n# 600063.SHA\n# 603011.SHA","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-349"}],"output_ports":[{"name":"data","node_id":"-349"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"-357","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n#号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nreturn_5\n# return_10\n# return_20\n# avg_amount_0/avg_amount_5\n# avg_amount_5/avg_amount_20\n# rank_avg_amount_0/rank_avg_amount_5\n# rank_avg_amount_5/rank_avg_amount_10\n# rank_return_0\n# rank_return_5\n# rank_return_10\n# rank_return_0/rank_return_5\n# rank_return_5/rank_return_10\n# pe_ttm_0\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-357"}],"output_ports":[{"name":"data","node_id":"-357"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"-374","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"10","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-374"},{"name":"features","node_id":"-374"}],"output_ports":[{"name":"data","node_id":"-374"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-384","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n print('执行初始化函数')\n # 加载预测数据\n context.ranker_prediction = context.options['data']\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 0.2\n context.hold_days = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data): \n # 获取今日的日期\n today =context.get_datetime() \n print(\"===============%s执行1次主函数===================\"%today)\n \n today = data.current_dt.strftime('%Y-%m-%d') \n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n \n \n\n context.daily_stock_sell=[k for k in stock_hold_now if k not in context.daily_stock_buy]\n \n \n print(\"-----要买的股票列表----:\")\n print(context.daily_stock_buy)#打印要买的股票\n print(\"-----要卖的股票列表----:\")\n print(context.daily_stock_sell)#打印要卖的股票\n \n print('获取当前时间: ', context.get_datetime())\n # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表\n stock_hold_now = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n print('目前持仓的股票列表:',today,stock_hold_now)\n \n \n # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;\n # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用\n cash_for_buy = context.portfolio.cash \n \n try:\n buy_stock = context.daily_stock_buy[today] # 当日符合买入条件的股票\n print('进行买入处理:',today,buy_stock)\n print('买入时间:',context.get_datetime())\n except:\n buy_stock=[] # 如果没有符合条件的股票,就设置为空\n \n try:\n sell_stock = context.daily_stock_sell[today] # 当日符合卖出条件的股票\n print('进行卖出处理:',today,sell_stock) \n print('卖出时间:',context.get_datetime())\n except:\n sell_stock=[] # 如果没有符合条件的股票,就设置为空\n \n # 需要卖出的股票:已有持仓中符合卖出条件的股票\n stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]\n # 需要买入的股票:没有持仓且符合买入条件的股票\n stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ] \n # 需要调仓的股票:已有持仓且不符合卖出条件的股票\n stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]\n \n # 如果有卖出信号\n print('stock_to_sell:%s'%len(stock_to_sell))\n if len(stock_to_sell)>0:\n for instrument in stock_to_sell:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n cur_position = context.portfolio.positions[sid].amount # 持仓\n if cur_position > 0 and data.can_trade(sid):\n print(\"--------调用卖出函数-------\")\n context.order_target_percent(sid, 0) # 全部卖出 \n # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)\n #cash_for_buy += stock_hold_now[instrument]\n \n \n # 如果有买入信号/有持仓\n if len(stock_to_buy)+len(stock_to_adjust)>0:\n weight = 1/(len(stock_to_buy)+len(stock_to_adjust)) # 每只股票的比重为等资金比例持有\n for instrument in stock_to_buy+stock_to_adjust:\n sid = context.symbol(instrument) # 将标的转化为equity格式\n if data.can_trade(sid):\n print(\"sid:%s\"%sid)\n print(\"cash_for_buy:%s\"%cash_for_buy)\n print(\"--------调用买入函数-------\")\n context.order_target_value(sid, weight*cash_for_buy) # 买入,调仓到目标份额,也可能是卖出部分哦","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context): \n print(\"执行数据准备函数\")\n # 加载预测数据\n te= context.options['data'] \n# df = context.options['data'].read_df()\n df = context.options['data']\n\n # 函数:求满足开仓条件的股票列表\n def open_pos_con(df):\n return list(df[df['buy_condition']>0].instrument)\n\n# # 函数:求满足平仓条件的股票列表\n# def close_pos_con(df):\n# return list(df[df['sell_condition']>0].instrument)\n\n # 每日买入股票的数据框\n context.daily_stock_buy= df.groupby('date').apply(open_pos_con)\n# # 每日卖出股票的数据框\n\n# context.daily_stock_sell= df.groupby('date').apply(close_pos_con)\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0.025,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-384"},{"name":"options_data","node_id":"-384"},{"name":"history_ds","node_id":"-384"},{"name":"benchmark_ds","node_id":"-384"},{"name":"trading_calendar","node_id":"-384"}],"output_ports":[{"name":"raw_perf","node_id":"-384"}],"cacheable":false,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-405","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"return_5","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-405"},{"name":"sort_by_ds","node_id":"-405"}],"output_ports":[{"name":"sorted_data","node_id":"-405"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-595","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Atrue%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-595"}],"output_ports":[{"name":"data","node_id":"-595"},{"name":"left_data","node_id":"-595"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-331","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\n###定义回调函数\ndef set_value(x): \n x['num']=x.index%len(x)\n x.loc[x['num']<5,'buy_condition']=1\n x.loc[x['num']>=5,'buy_condition']=0\n return x \n\n\ndef bigquant_run(input_1): \n df = input_1.read()\n ##排在前5位的开仓条件为1,其他为0 \n\n \n df=df.groupby('date').apply(set_value)\n data_1=df\n return Outputs(data_1=data_1)\n \n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"input_1","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-331"},{"name":"input_2","node_id":"-331"},{"name":"input_3","node_id":"-331"}],"output_ports":[{"name":"data_1","node_id":"-331"},{"name":"data_2","node_id":"-331"},{"name":"data_3","node_id":"-331"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='-349' Position='26,5,200,200'/><node_position Node='-357' Position='399,-1,200,200'/><node_position Node='-374' Position='267,119,200,200'/><node_position Node='-384' Position='233.96359252929688,506.1489562988281,200,200'/><node_position Node='-405' Position='277,308,200,200'/><node_position Node='-595' Position='270,204,200,200'/><node_position Node='-331' Position='267,401,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [39]:
    # 本代码由可视化策略环境自动生成 2023年1月8日 15:52
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    ###定义回调函数
    def set_value(x):      
        x['num']=x.index%len(x)
        x.loc[x['num']<5,'buy_condition']=1
        x.loc[x['num']>=5,'buy_condition']=0
        return x  
    
    
    def m7_run_bigquant_run(input_1): 
        df = input_1.read()
        ##排在前5位的开仓条件为1,其他为0 
    
     
        df=df.groupby('date').apply(set_value)
        data_1=df
        return Outputs(data_1=data_1)
        
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m7_post_run_bigquant_run(outputs):
        return outputs
    
    # 回测引擎:初始化函数,只执行一次
    def m5_initialize_bigquant_run(context):
        print('执行初始化函数')
        # 加载预测数据
        context.ranker_prediction = context.options['data']
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 0.2
        context.hold_days = 5
    
    # 回测引擎:每日数据处理函数,每天执行一次
    def m5_handle_data_bigquant_run(context, data):   
        # 获取今日的日期
        today =context.get_datetime() 
        print("===============%s执行1次主函数==================="%today)
        
        today = data.current_dt.strftime('%Y-%m-%d') 
         # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
        
       
    
        context.daily_stock_sell=[k for k in stock_hold_now if k not in context.daily_stock_buy]
       
       
        print("-----要买的股票列表----:")
        print(context.daily_stock_buy)#打印要买的股票
        print("-----要卖的股票列表----:")
        print(context.daily_stock_sell)#打印要卖的股票
        
        print('获取当前时间: ', context.get_datetime())
        # 通过positions对象,使用列表生成式的方法获取目前持仓的股票列表
        stock_hold_now = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
        print('目前持仓的股票列表:',today,stock_hold_now)
        
        
        # 记录用于买入股票的可用现金,因为是早盘卖股票,需要记录卖出的股票市值并在买入下单前更新可用现金;
        # 如果是早盘买尾盘卖,则卖出时不需更新可用现金,因为尾盘卖出股票所得现金无法使用
        cash_for_buy = context.portfolio.cash    
        
        try:
            buy_stock = context.daily_stock_buy[today]  # 当日符合买入条件的股票
            print('进行买入处理:',today,buy_stock)
            print('买入时间:',context.get_datetime())
        except:
            buy_stock=[]  # 如果没有符合条件的股票,就设置为空
        
        try:
            sell_stock = context.daily_stock_sell[today]  # 当日符合卖出条件的股票
            print('进行卖出处理:',today,sell_stock)      
            print('卖出时间:',context.get_datetime())
        except:
            sell_stock=[] # 如果没有符合条件的股票,就设置为空
        
        # 需要卖出的股票:已有持仓中符合卖出条件的股票
        stock_to_sell = [ i for i in stock_hold_now if i in sell_stock ]
        # 需要买入的股票:没有持仓且符合买入条件的股票
        stock_to_buy = [ i for i in buy_stock if i not in stock_hold_now ]  
        # 需要调仓的股票:已有持仓且不符合卖出条件的股票
        stock_to_adjust=[ i for i in stock_hold_now if i not in sell_stock ]
        
        # 如果有卖出信号
        print('stock_to_sell:%s'%len(stock_to_sell))
        if len(stock_to_sell)>0:
            for instrument in stock_to_sell:
                sid = context.symbol(instrument) # 将标的转化为equity格式
                cur_position = context.portfolio.positions[sid].amount # 持仓
                if cur_position > 0 and data.can_trade(sid):
                    print("--------调用卖出函数-------")
                    context.order_target_percent(sid, 0) # 全部卖出 
                    # 因为设置的是早盘卖出早盘买入,需要根据卖出的股票更新可用现金;如果设置尾盘卖出早盘买入,则不需更新可用现金(可以删除下面的语句)
                    #cash_for_buy += stock_hold_now[instrument]
            
            
        # 如果有买入信号/有持仓
        if len(stock_to_buy)+len(stock_to_adjust)>0:
            weight = 1/(len(stock_to_buy)+len(stock_to_adjust)) # 每只股票的比重为等资金比例持有
            for instrument in stock_to_buy+stock_to_adjust:
                sid = context.symbol(instrument) # 将标的转化为equity格式
                if  data.can_trade(sid):
                    print("sid:%s"%sid)
                    print("cash_for_buy:%s"%cash_for_buy)
                    print("--------调用买入函数-------")
                    context.order_target_value(sid, weight*cash_for_buy) # 买入,调仓到目标份额,也可能是卖出部分哦
    # 回测引擎:准备数据,只执行一次
    def m5_prepare_bigquant_run(context):    
        print("执行数据准备函数")
        # 加载预测数据
        te= context.options['data']    
    #     df = context.options['data'].read_df()
        df = context.options['data']
    
        # 函数:求满足开仓条件的股票列表
        def open_pos_con(df):
            return list(df[df['buy_condition']>0].instrument)
    
    #     # 函数:求满足平仓条件的股票列表
    #     def close_pos_con(df):
    #         return list(df[df['sell_condition']>0].instrument)
    
        # 每日买入股票的数据框
        context.daily_stock_buy= df.groupby('date').apply(open_pos_con)
    #     # 每日卖出股票的数据框
    
    #     context.daily_stock_sell= df.groupby('date').apply(close_pos_con)
    
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m5_before_trading_start_bigquant_run(context, data):
        pass
    
    
    m1 = M.instruments.v2(
        start_date='2022-1-1',
        end_date='2022-1-10',
        market='CN_STOCK_A',
        instrument_list="""# 002820.SZA
    # 600420.SHA
    # 002421.SZA
    # 601001.SHA
    # 601011.SHA
    # 601015.SHA
    # 600490.SHA
    # 600063.SHA
    # 603011.SHA""",
        max_count=0
    )
    
    m2 = M.input_features.v1(
        features="""
    #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    return_5
    # return_10
    # return_20
    # avg_amount_0/avg_amount_5
    # avg_amount_5/avg_amount_20
    # rank_avg_amount_0/rank_avg_amount_5
    # rank_avg_amount_5/rank_avg_amount_10
    # rank_return_0
    # rank_return_5
    # rank_return_10
    # rank_return_0/rank_return_5
    # rank_return_5/rank_return_10
    # pe_ttm_0
    
    """
    )
    
    m4 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m2.data,
        start_date='',
        end_date='',
        before_start_days=10
    )
    
    m3 = M.chinaa_stock_filter.v1(
        input_data=m4.data,
        index_constituent_cond=['全部'],
        board_cond=['全部'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['非退市'],
        output_left_data=True
    )
    
    m6 = M.sort.v5(
        input_ds=m3.data,
        sort_by='return_5',
        group_by='date',
        keep_columns='--',
        ascending=True
    )
    
    m7 = M.cached.v3(
        input_1=m6.sorted_data,
        run=m7_run_bigquant_run,
        post_run=m7_post_run_bigquant_run,
        input_ports='input_1',
        params='{}',
        output_ports='data_1'
    )
    
    m5 = M.trade.v4(
        instruments=m1.data,
        options_data=m7.data_1,
        start_date='',
        end_date='',
        initialize=m5_initialize_bigquant_run,
        handle_data=m5_handle_data_bigquant_run,
        prepare=m5_prepare_bigquant_run,
        before_trading_start=m5_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    
    ---------------------------------------------------------------------------
    IndexError                                Traceback (most recent call last)
    <ipython-input-39-e518e9149120> in <module>
        218 )
        219 
    --> 220 m5 = M.trade.v4(
        221     instruments=m1.data,
        222     options_data=m7.data_1,
    
    IndexError: list index out of range