复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-295:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-288:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-548:input_ds","from_node_id":"-86:data"},{"to_node_id":"-86:input_data","from_node_id":"-295:data"},{"to_node_id":"-295:input_data","from_node_id":"-288:data"},{"to_node_id":"-288:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"# #号开始的表示注释\n# 多个特征,每行一个,可以包含基础特征和衍生特征\nreturn_5\npe_ttm_0\nsig = 0.5*(return_5+pe_ttm_0)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-86","module_id":"BigQuantSpace.dropnan.dropnan-v1","parameters":[],"input_ports":[{"name":"input_data","node_id":"-86"}],"output_ports":[{"name":"data","node_id":"-86"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-295","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-295"},{"name":"features","node_id":"-295"}],"output_ports":[{"name":"data","node_id":"-295"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-288","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"60","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-288"},{"name":"features","node_id":"-288"}],"output_ports":[{"name":"data","node_id":"-288"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2015-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2017-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-548","module_id":"BigQuantSpace.sort.sort-v5","parameters":[{"name":"sort_by","value":"sig","type":"Literal","bound_global_parameter":null},{"name":"group_by","value":"date","type":"Literal","bound_global_parameter":null},{"name":"keep_columns","value":"--","type":"Literal","bound_global_parameter":null},{"name":"ascending","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_ds","node_id":"-548"},{"name":"sort_by_ds","node_id":"-548"}],"output_ports":[{"name":"sorted_data","node_id":"-548"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='763.8900756835938,21,200,200'/><node_position Node='-86' Position='1078,418,200,200'/><node_position Node='-295' Position='1081,327,200,200'/><node_position Node='-288' Position='1078,236,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1074,127,200,200'/><node_position Node='-548' Position='1099.4173583984375,499.6900634765625,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [11]:
    # 本代码由可视化策略环境自动生成 2022年10月27日 11:18
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    m3 = M.input_features.v1(
        features="""# #号开始的表示注释
    # 多个特征,每行一个,可以包含基础特征和衍生特征
    return_5
    pe_ttm_0
    sig = 0.5*(return_5+pe_ttm_0)
    """
    )
    
    m9 = M.instruments.v2(
        start_date='2015-01-01',
        end_date='2017-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=60
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    m14 = M.dropnan.v1(
        input_data=m18.data
    )
    
    m1 = M.sort.v5(
        input_ds=m14.data,
        sort_by='sig',
        group_by='date',
        keep_columns='--',
        ascending=False
    )
    
    In [12]:
    df = m1.sorted_data.read()
    df
    
    Out[12]:
    date instrument pe_ttm_0 return_5 sig
    0 2014-11-03 000416.SZA 363002.468750 1.045399 181501.750000
    1 2014-11-03 600311.SHA 99663.593750 1.084359 49832.339844
    2 2014-11-03 601118.SHA 10987.546875 1.003750 5494.275391
    3 2014-11-03 002607.SZA 8862.538086 1.031659 4431.784668
    4 2014-11-03 600485.SHA 7320.190430 0.961319 3660.575928
    ... ... ... ... ... ...
    1308241 2016-12-30 002473.SZA -3769.035645 0.971419 -1884.032104
    1308242 2016-12-30 601958.SHA -6095.591797 0.977011 -3047.307373
    1308243 2016-12-30 600462.SHA -8560.729492 1.054745 -4279.837402
    1308244 2016-12-30 600365.SHA -12566.954102 0.981643 -6282.986328
    1308245 2016-12-30 000925.SZA -121497.304688 1.037146 -60748.132812

    1308246 rows × 5 columns

    In [ ]: