复制链接
克隆策略

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-106:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-773:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-106:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-113:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-122:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-129:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-251:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-768:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-778:input_2","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-243:input_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-122:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-3283:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-113:input_data","from_node_id":"-106:data"},{"to_node_id":"-768:input_1","from_node_id":"-113:data"},{"to_node_id":"-129:input_data","from_node_id":"-122:data"},{"to_node_id":"-778:input_1","from_node_id":"-129:data"},{"to_node_id":"-2345:input_2","from_node_id":"-129:data"},{"to_node_id":"-168:inputs","from_node_id":"-160:data"},{"to_node_id":"-682:inputs","from_node_id":"-160:data"},{"to_node_id":"-224:inputs","from_node_id":"-168:data"},{"to_node_id":"-231:inputs","from_node_id":"-196:data"},{"to_node_id":"-196:inputs","from_node_id":"-224:data"},{"to_node_id":"-238:inputs","from_node_id":"-231:data"},{"to_node_id":"-682:outputs","from_node_id":"-238:data"},{"to_node_id":"-1098:input_model","from_node_id":"-682:data"},{"to_node_id":"-1540:trained_model","from_node_id":"-1098:data"},{"to_node_id":"-2345:input_1","from_node_id":"-1540:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-768:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"-773:data"},{"to_node_id":"-251:input_data","from_node_id":"-778:data"},{"to_node_id":"-1098:training_data","from_node_id":"-243:data"},{"to_node_id":"-1540:input_data","from_node_id":"-251:data"},{"to_node_id":"-8872:predictions","from_node_id":"-2345:data_2"},{"to_node_id":"-3294:input_1","from_node_id":"-3283:data"},{"to_node_id":"-2345:input_3","from_node_id":"-3294:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2010-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2015-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"close_0/mean(close_0,5)\nclose_0/mean(close_0,10)\nclose_0/mean(close_0,20)\nclose_0/open_0\nopen_0/mean(close_0,5)\nopen_0/mean(close_0,10)\nopen_0/mean(close_0,20)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":false,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2019-04-20","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false},{"node_id":"-106","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-106"},{"name":"features","node_id":"-106"}],"output_ports":[{"name":"data","node_id":"-106"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-113","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-113"},{"name":"features","node_id":"-113"}],"output_ports":[{"name":"data","node_id":"-113"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-122","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-122"},{"name":"features","node_id":"-122"}],"output_ports":[{"name":"data","node_id":"-122"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-129","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-129"},{"name":"features","node_id":"-129"}],"output_ports":[{"name":"data","node_id":"-129"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true},{"node_id":"-160","module_id":"BigQuantSpace.dl_layer_input.dl_layer_input-v1","parameters":[{"name":"shape","value":"7","type":"Literal","bound_global_parameter":null},{"name":"batch_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"dtype","value":"float32","type":"Literal","bound_global_parameter":null},{"name":"sparse","value":"False","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":false,"seq_num":6,"comment":"","comment_collapsed":true},{"node_id":"-168","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"256","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":false,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-196","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"128","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"relu","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-196"}],"output_ports":[{"name":"data","node_id":"-196"}],"cacheable":false,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-224","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-224"}],"output_ports":[{"name":"data","node_id":"-224"}],"cacheable":false,"seq_num":21,"comment":"","comment_collapsed":true},{"node_id":"-231","module_id":"BigQuantSpace.dl_layer_dropout.dl_layer_dropout-v1","parameters":[{"name":"rate","value":"0.1","type":"Literal","bound_global_parameter":null},{"name":"noise_shape","value":"","type":"Literal","bound_global_parameter":null},{"name":"seed","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":false,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-238","module_id":"BigQuantSpace.dl_layer_dense.dl_layer_dense-v1","parameters":[{"name":"units","value":"1","type":"Literal","bound_global_parameter":null},{"name":"activation","value":"linear","type":"Literal","bound_global_parameter":null},{"name":"user_activation","value":"","type":"Literal","bound_global_parameter":null},{"name":"use_bias","value":"True","type":"Literal","bound_global_parameter":null},{"name":"kernel_initializer","value":"glorot_uniform","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_initializer","value":"Zeros","type":"Literal","bound_global_parameter":null},{"name":"user_bias_initializer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"kernel_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_kernel_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"bias_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_bias_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer","value":"None","type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l1","value":0,"type":"Literal","bound_global_parameter":null},{"name":"activity_regularizer_l2","value":0,"type":"Literal","bound_global_parameter":null},{"name":"user_activity_regularizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"kernel_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_kernel_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"bias_constraint","value":"None","type":"Literal","bound_global_parameter":null},{"name":"user_bias_constraint","value":"","type":"Literal","bound_global_parameter":null},{"name":"name","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"inputs","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":false,"seq_num":23,"comment":"","comment_collapsed":true},{"node_id":"-682","module_id":"BigQuantSpace.dl_model_init.dl_model_init-v1","parameters":[],"input_ports":[{"name":"inputs","node_id":"-682"},{"name":"outputs","node_id":"-682"}],"output_ports":[{"name":"data","node_id":"-682"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-1098","module_id":"BigQuantSpace.dl_model_train.dl_model_train-v1","parameters":[{"name":"optimizer","value":"Adam","type":"Literal","bound_global_parameter":null},{"name":"user_optimizer","value":"","type":"Literal","bound_global_parameter":null},{"name":"loss","value":"mean_squared_error","type":"Literal","bound_global_parameter":null},{"name":"user_loss","value":"","type":"Literal","bound_global_parameter":null},{"name":"metrics","value":"mse","type":"Literal","bound_global_parameter":null},{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"epochs","value":"5","type":"Literal","bound_global_parameter":null},{"name":"earlystop","value":"","type":"Literal","bound_global_parameter":null},{"name":"custom_objects","value":"# 用户的自定义层需要写到字典中,比如\n# {\n# \"MyLayer\": MyLayer\n# }\nbigquant_run = {\n \n}\n","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_model","node_id":"-1098"},{"name":"training_data","node_id":"-1098"},{"name":"validation_data","node_id":"-1098"}],"output_ports":[{"name":"data","node_id":"-1098"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-1540","module_id":"BigQuantSpace.dl_model_predict.dl_model_predict-v1","parameters":[{"name":"batch_size","value":"1024","type":"Literal","bound_global_parameter":null},{"name":"n_gpus","value":0,"type":"Literal","bound_global_parameter":null},{"name":"verbose","value":"2:每个epoch输出一行记录","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"trained_model","node_id":"-1540"},{"name":"input_data","node_id":"-1540"}],"output_ports":[{"name":"data","node_id":"-1540"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true},{"node_id":"-768","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-768"},{"name":"input_2","node_id":"-768"}],"output_ports":[{"name":"data","node_id":"-768"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true},{"node_id":"-773","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-773"},{"name":"input_2","node_id":"-773"}],"output_ports":[{"name":"data","node_id":"-773"}],"cacheable":false,"seq_num":13,"comment":"","comment_collapsed":true},{"node_id":"-778","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"[]","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-778"},{"name":"input_2","node_id":"-778"}],"output_ports":[{"name":"data","node_id":"-778"}],"cacheable":true,"seq_num":25,"comment":"","comment_collapsed":true},{"node_id":"-243","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-243"},{"name":"features","node_id":"-243"}],"output_ports":[{"name":"data","node_id":"-243"}],"cacheable":true,"seq_num":26,"comment":"","comment_collapsed":true},{"node_id":"-251","module_id":"BigQuantSpace.dl_convert_to_bin.dl_convert_to_bin-v2","parameters":[{"name":"window_size","value":1,"type":"Literal","bound_global_parameter":null},{"name":"feature_clip","value":5,"type":"Literal","bound_global_parameter":null},{"name":"flatten","value":"True","type":"Literal","bound_global_parameter":null},{"name":"window_along_col","value":"instrument","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-251"},{"name":"features","node_id":"-251"}],"output_ports":[{"name":"data","node_id":"-251"}],"cacheable":true,"seq_num":27,"comment":"","comment_collapsed":true},{"node_id":"-8872","module_id":"BigQuantSpace.metrics_regression.metrics_regression-v1","parameters":[{"name":"explained_variance_score","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_absolute_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_squared_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"mean_squared_log_error","value":"False","type":"Literal","bound_global_parameter":null},{"name":"median_absolute_error","value":"True","type":"Literal","bound_global_parameter":null},{"name":"r2_score","value":"True","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"predictions","node_id":"-8872"}],"output_ports":[{"name":"report","node_id":"-8872"}],"cacheable":false,"seq_num":24,"comment":"","comment_collapsed":true},{"node_id":"-2345","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n pred_label = input_1.read_pickle()\n df = input_2.read_df()\n df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n df_value = pd.merge(left=df,right=input_3.read(),on=['date','instrument'],how='inner')\n return Outputs(data_1=DataSource.write_df(df), data_2=DataSource.write_df(df_value), data_3=None)\n\n# # 示例代码如下。在这里编写您的代码\n# pred_label = input_1.read_pickle()\n# df = input_2.read_df()\n# df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})\n# df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])\n# df_value = pd.merge(left=df,right=input_3.read(),on=['date','instrument'],how='inner')\n# return Outputs(data_1=DataSource.write_df(df), data_2=DataSource.write_df(df_value), data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-2345"},{"name":"input_2","node_id":"-2345"},{"name":"input_3","node_id":"-2345"}],"output_ports":[{"name":"data_1","node_id":"-2345"},{"name":"data_2","node_id":"-2345"},{"name":"data_3","node_id":"-2345"}],"cacheable":true,"seq_num":28,"comment":"","comment_collapsed":true},{"node_id":"-3283","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -5) / shift(open, -1)-1\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-3283"}],"output_ports":[{"name":"data","node_id":"-3283"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true},{"node_id":"-3294","module_id":"BigQuantSpace.standardlize.standardlize-v8","parameters":[{"name":"columns_input","value":"label","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-3294"},{"name":"input_2","node_id":"-3294"}],"output_ports":[{"name":"data","node_id":"-3294"}],"cacheable":false,"seq_num":12,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='205,59,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='131,205,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='766,2,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='328,457,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1046.140625,66.5625,200,200'/><node_position Node='-106' Position='470,182,200,200'/><node_position Node='-113' Position='461,283,200,200'/><node_position Node='-122' Position='1006,271,200,200'/><node_position Node='-129' Position='1004,352,200,200'/><node_position Node='-160' Position='-202,33,200,200'/><node_position Node='-168' Position='-201,148,200,200'/><node_position Node='-196' Position='-203,311,200,200'/><node_position Node='-224' Position='-203,239,200,200'/><node_position Node='-231' Position='-201,395,200,200'/><node_position Node='-238' Position='-198,470,200,200'/><node_position Node='-682' Position='-194,560,200,200'/><node_position Node='-1098' Position='107,670,200,200'/><node_position Node='-1540' Position='217,759,200,200'/><node_position Node='-768' Position='479,370,200,200'/><node_position Node='-773' Position='137,329,200,200'/><node_position Node='-778' Position='918,430,200,200'/><node_position Node='-243' Position='325,550,200,200'/><node_position Node='-251' Position='816,518,200,200'/><node_position Node='-8872' Position='365.421875,1021.6249389648438,200,200'/><node_position Node='-2345' Position='423.890625,862.359375,200,200'/><node_position Node='-3283' Position='896,624,200,200'/><node_position Node='-3294' Position='882,734,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [6]:
    # 本代码由可视化策略环境自动生成 2021年12月14日 20:38
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    # 用户的自定义层需要写到字典中,比如
    # {
    #   "MyLayer": MyLayer
    # }
    m5_custom_objects_bigquant_run = {
        
    }
    
    # Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端
    def m28_run_bigquant_run(input_1, input_2, input_3):
        # 示例代码如下。在这里编写您的代码
        pred_label = input_1.read_pickle()
        df = input_2.read_df()
        df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
        df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
        df_value = pd.merge(left=df,right=input_3.read(),on=['date','instrument'],how='inner')
        return Outputs(data_1=DataSource.write_df(df), data_2=DataSource.write_df(df_value), data_3=None)
    
    #     # 示例代码如下。在这里编写您的代码
    #     pred_label = input_1.read_pickle()
    #     df = input_2.read_df()
    #     df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})
    #     df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])
    #     df_value = pd.merge(left=df,right=input_3.read(),on=['date','instrument'],how='inner')
    #     return Outputs(data_1=DataSource.write_df(df), data_2=DataSource.write_df(df_value), data_3=None)
    
    # 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。
    def m28_post_run_bigquant_run(outputs):
        return outputs
    
    
    m1 = M.instruments.v2(
        start_date='2010-01-01',
        end_date='2015-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m13 = M.standardlize.v8(
        input_1=m2.data,
        columns_input='label',
        m_cached=False
    )
    
    m3 = M.input_features.v1(
        features="""close_0/mean(close_0,5)
    close_0/mean(close_0,10)
    close_0/mean(close_0,20)
    close_0/open_0
    open_0/mean(close_0,5)
    open_0/mean(close_0,10)
    open_0/mean(close_0,20)""",
        m_cached=False
    )
    
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m14 = M.standardlize.v8(
        input_1=m16.data,
        input_2=m3.data,
        columns_input='[]'
    )
    
    m7 = M.join.v3(
        data1=m13.data,
        data2=m14.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    m26 = M.dl_convert_to_bin.v2(
        input_data=m7.data,
        features=m3.data,
        window_size=1,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2016-01-01'),
        end_date=T.live_run_param('trading_date', '2019-04-20'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=0
    )
    
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=False
    )
    
    m25 = M.standardlize.v8(
        input_1=m18.data,
        input_2=m3.data,
        columns_input='[]'
    )
    
    m27 = M.dl_convert_to_bin.v2(
        input_data=m25.data,
        features=m3.data,
        window_size=1,
        feature_clip=5,
        flatten=True,
        window_along_col='instrument'
    )
    
    m10 = M.advanced_auto_labeler.v2(
        instruments=m9.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/data_history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/big_expr.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -5) / shift(open, -1)-1
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    m12 = M.standardlize.v8(
        input_1=m10.data,
        columns_input='label',
        m_cached=False
    )
    
    m6 = M.dl_layer_input.v1(
        shape='7',
        batch_shape='',
        dtype='float32',
        sparse=False,
        name=''
    )
    
    m8 = M.dl_layer_dense.v1(
        inputs=m6.data,
        units=256,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m21 = M.dl_layer_dropout.v1(
        inputs=m8.data,
        rate=0.1,
        noise_shape='',
        name=''
    )
    
    m20 = M.dl_layer_dense.v1(
        inputs=m21.data,
        units=128,
        activation='relu',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m22 = M.dl_layer_dropout.v1(
        inputs=m20.data,
        rate=0.1,
        noise_shape='',
        name=''
    )
    
    m23 = M.dl_layer_dense.v1(
        inputs=m22.data,
        units=1,
        activation='linear',
        use_bias=True,
        kernel_initializer='glorot_uniform',
        bias_initializer='Zeros',
        kernel_regularizer='None',
        kernel_regularizer_l1=0,
        kernel_regularizer_l2=0,
        bias_regularizer='None',
        bias_regularizer_l1=0,
        bias_regularizer_l2=0,
        activity_regularizer='None',
        activity_regularizer_l1=0,
        activity_regularizer_l2=0,
        kernel_constraint='None',
        bias_constraint='None',
        name=''
    )
    
    m4 = M.dl_model_init.v1(
        inputs=m6.data,
        outputs=m23.data
    )
    
    m5 = M.dl_model_train.v1(
        input_model=m4.data,
        training_data=m26.data,
        optimizer='Adam',
        loss='mean_squared_error',
        metrics='mse',
        batch_size=1024,
        epochs=5,
        custom_objects=m5_custom_objects_bigquant_run,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m11 = M.dl_model_predict.v1(
        trained_model=m5.data,
        input_data=m27.data,
        batch_size=1024,
        n_gpus=0,
        verbose='2:每个epoch输出一行记录'
    )
    
    m28 = M.cached.v3(
        input_1=m11.data,
        input_2=m18.data,
        input_3=m12.data,
        run=m28_run_bigquant_run,
        post_run=m28_post_run_bigquant_run,
        input_ports='',
        params='{}',
        output_ports=''
    )
    
    m24 = M.metrics_regression.v1(
        predictions=m28.data_2,
        explained_variance_score=True,
        mean_absolute_error=True,
        mean_squared_error=True,
        mean_squared_log_error=False,
        median_absolute_error=True,
        r2_score=True
    )
    
    Epoch 1/5
    3061/3061 - 11s - loss: 0.9903 - mse: 0.9903
    Epoch 2/5
    3061/3061 - 5s - loss: 0.9891 - mse: 0.9891
    Epoch 3/5
    3061/3061 - 5s - loss: 0.9888 - mse: 0.9888
    Epoch 4/5
    3061/3061 - 5s - loss: 0.9886 - mse: 0.9886
    Epoch 5/5
    3061/3061 - 7s - loss: 0.9885 - mse: 0.9885
    
    2334/2334 - 3s
    DataSource(255c79349df041069a94b36aac7b4224T)
    
    可解释方差: 0.002733191821018943
    平均绝对误差: 0.707599771603117
    均方误差: 0.9853414225028186
    均方绝对误差: 0.5094940363276789
    确定系数(r^2): 0.0027071536646356975
    
    In [8]:
    m24.report
    
    Out[8]:
    {'explained_variance_score': 0.002733191821018943,
     'mean_absolute_error': 0.707599771603117,
     'mean_squared_error': 0.9853414225028186,
     'median_absolute_error': 0.5094940363276789,
     'r2_score': 0.0027071536646356975}