{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-228:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-234:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-123:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-550:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-575:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-228:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-235:input_data","from_node_id":"-228:data"},{"to_node_id":"-253:data1","from_node_id":"-234:data"},{"to_node_id":"-582:data1","from_node_id":"-253:data"},{"to_node_id":"-253:data2","from_node_id":"-235:data"},{"to_node_id":"-234:features","from_node_id":"-270:data"},{"to_node_id":"-123:options_data","from_node_id":"-185:data_1"},{"to_node_id":"-123:benchmark_ds","from_node_id":"-550:data_1"},{"to_node_id":"-575:features","from_node_id":"-570:data"},{"to_node_id":"-582:data2","from_node_id":"-575:data"},{"to_node_id":"-121:input_1","from_node_id":"-582:data"},{"to_node_id":"-185:input_1","from_node_id":"-297:data_1"},{"to_node_id":"-185:input_2","from_node_id":"-297:data_2"},{"to_node_id":"-185:input_3","from_node_id":"-297:data_3"},{"to_node_id":"-297:input_1","from_node_id":"-121:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2016-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2021-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\nin_csi300_0\nin_csi500_0\nin_sse50_0\nindustry_sw_level1_0\nst_status_0\n\n# 选股条件\ncond1=(list_days_0>180)&\\\n(ta_macd(close_0/adjust_factor_0, fastperiod=12, slowperiod=26, signalperiod=26, derive='long'))\n\n# 排序选股\ncond2=rank(ta_bbands_l(close_0/adjust_factor_0, timeperiod=5,nbdevup=2,nbdevdn=2) * 1)*1.00\n\n# 进场条件\ncond3=(ta_bbands_u(close_0/adjust_factor_0, timeperiod=5, nbdevup=2, nbdevdn=2)>0)\n \n# 卖出条件\ncond4=(ta_bbands_l(close_0/adjust_factor_0, timeperiod=5, nbdevup=2, nbdevdn=2)<1)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true},{"node_id":"-228","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"300","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-228"},{"name":"features","node_id":"-228"}],"output_ports":[{"name":"data","node_id":"-228"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true},{"node_id":"-234","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"industry_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-234"},{"name":"features","node_id":"-234"}],"output_ports":[{"name":"data","node_id":"-234"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true},{"node_id":"-253","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-253"},{"name":"data2","node_id":"-253"}],"output_ports":[{"name":"data","node_id":"-253"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true},{"node_id":"-235","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-235"},{"name":"features","node_id":"-235"}],"output_ports":[{"name":"data","node_id":"-235"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true},{"node_id":"-270","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"concept\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-270"}],"output_ports":[{"name":"data","node_id":"-270"}],"cacheable":true,"seq_num":10,"comment":"获取股票概念,并匹配选中的概念","comment_collapsed":false},{"node_id":"-123","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"\ndef prepare_index_data(context):\n \"\"\"准备指数数据\"\"\"\n if context.market_risk_conf != []:\n if len(context.market_risk_conf) == 1:\n index_code = context.market_risk_conf[0]['params']['index_code']\n start_date = '2005-01-01'\n end_date = context.end_date\n index_data = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code], start_date=start_date, end_date=end_date).set_index('date')\n \n if context.market_risk_conf[0]['method'] == 'market_ma_stoploss':\n ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])\n index_data['ma_%s'%ma_periods] = index_data['close'].rolling(ma_periods).mean()\n index_data['signal'] = np.where(index_data['close'] > index_data['ma_%s'%ma_periods], 'long', 'short')\n\n elif context.market_risk_conf[0]['method'] == 'market_fallrange_stoploss':\n days = context.market_risk_conf[0]['params']['days']\n fallrange = context.market_risk_conf[0]['params']['fallrange']\n index_data['signal'] = np.where(index_data['close']/index_data['close'].shift(days)-1 <= fallrange, 'long', 'short')\n context.index_signal_data = index_data \n \n if len(context.market_risk_conf) == 2:\n start_date = '2016-01-01'\n end_date = context.end_date \n if context.market_risk_conf[0]['method'] == 'market_ma_stoploss': \n index_code_1 = context.market_risk_conf[0]['params']['index_code']\n index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')\n ma_periods = int(context.market_risk_conf[0]['params']['ma_periods'])\n \n index_code_2 = context.market_risk_conf[1]['params']['index_code']\n index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')\n days = context.market_risk_conf[1]['params']['days']\n fallrange = context.market_risk_conf[1]['params']['fallrange']\n else:\n index_code_1 = context.market_risk_conf[1]['params']['index_code']\n index_data_1 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_1], start_date=start_date, end_date=end_date).set_index('date')\n ma_periods = int(context.market_risk_conf[1]['params']['ma_periods'])\n \n index_code_2 = context.market_risk_conf[0]['params']['index_code']\n index_data_2 = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[index_code_2], start_date=start_date, end_date=end_date).set_index('date')\n days = context.market_risk_conf[0]['params']['days']\n fallrange = context.market_risk_conf[0]['params']['fallrange'] \n \n index_data_1['ma_%s'%ma_periods] = index_data_1['close'].rolling(ma_periods).mean()\n index_data_1['signal_1'] = np.where(index_data_1['close'] > index_data_1['ma_%s'%ma_periods], 1, 0)\n signal_1 = index_data_1[['signal_1']].reset_index() \n index_data_2['signal_2'] = np.where(index_data_2['close']/index_data_2['close'].shift(days)-1 <= fallrange, 1, 0)\n signal_2 = index_data_2[['signal_2']].reset_index()\n signal = pd.merge(signal_1,signal_2).set_index('date')\n signal['signal_sum'] = signal['signal_1'] + signal['signal_2']\n signal['signal'] = np.where(signal['signal_sum']>0,'long','short') \n context.index_signal_data = signal\n else:\n context.index_signal_data = None \n\ndef bigquant_run(context):\n context.set_commission(PerOrder(buy_cost=0.003, sell_cost=0.0035, min_cost=5))\n context.selected_stock = []\n context.trade_mode = '择时'\n\n if context.trade_mode == '轮动':\n context.buy_frequency = 1\n context.sell_frequency = 1\n context.rebalance_periods = 1 # 调仓周期\n context.max_stock_count = 5 # 最大持仓股票数量\n context.order_weight_method = 'equal_weight' # 买入方式\n context.is_sell_willbuy_stock = False # 卖出欲买进股票 \n else:\n # 买入条件参数\n context.stock_select_frequency = 1 # 选股频率\n context.order_weight_method = 'equal_weight' # 买入方式\n context.buy_frequency = 2 # 买入频率\n context.can_duplication_buy = True # 是否可重复买入\n context.max_stock_count = 5 # 最大持仓股票数量\n context.max_stock_weight = 0.2 # 个股最大持仓比重\n\n # 卖出条件参数\n context.sell_frequency = 20 # 卖出频率\n context.is_sell_willbuy_stock = False # 卖出欲买进股票 \n\n # 风控参数 \n context.stock_risk_conf = [{'method':'stock_percent_stoploss', 'params':{'percent': 0.1}}] # 支持多选 无:[]\n context.strategy_risk_conf = [] # 支持多选 无:[]\n context.market_risk_conf = [{'method':'market_fallrange_stoploss', 'params':{'days':10,'fallrange':0.1,'index_code':'000300.HIX'}}] # 支持多选, 无: []\n \n prepare_index_data(context)\n slippage_type = 'percentage'\n from zipline.finance.slippage import SlippageModel\n class FixedPriceSlippage(SlippageModel):\n # 指定初始化函数\n def __init__(self, spreads, price_field_buy, price_field_sell):\n # 存储spread的字典,用股票代码作为key\n self.spreads = spreads\n self._price_field_buy = price_field_buy\n self._price_field_sell = price_field_sell\n def process_order(self, data, order, bar_volume=0, trigger_check_price=0):\n if order.limit is None:\n price_field = self._price_field_buy if order.amount > 0 else self._price_field_sell\n price_base = data.current(order.asset, price_field)\n if slippage_type == 'price':\n price = price_base + (self.spreads / 2) if order.amount > 0 else price_base - (self.spreads / 2)\n else:\n price = price_base * (1.0 + self.spreads / 2) if order.amount > 0 else price_base * (1.0 - self.spreads / 2)\n else:\n price = order.limit\n # 返回希望成交的价格和数量\n return (price, order.amount)\n # 设置price_field\n fix_slippage = FixedPriceSlippage(price_field_buy='open', price_field_sell='open', spreads=0.002)\n context.set_slippage(us_equities=fix_slippage)","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"#--------------------------------------------------------------------\n# 卖出条件\n#-------------------------------------------------------------------- \ndef sell_action(context, data):\n date = data.current_dt.strftime('%Y-%m-%d')\n hit_stop_stock = context.stock_hit_stop \n \n try:\n today_enter_stock = context.enter_daily_df.loc[date] \n except KeyError as e:\n today_enter_stock = []\n try:\n today_exit_stock = context.exit_daily_df.loc[date] \n except KeyError as e:\n today_exit_stock = []\n \n target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock ] \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票\n \n if context.trading_day_index % context.sell_frequency == 0:\n stock_to_sell = [i for i in stock_hold_now if i in today_exit_stock] # 要卖出的股票\n stock_buy_and_sell = [i for i in stock_to_sell if i in target_stock_to_buy]\n if context.is_sell_willbuy_stock == False: # 要买入的股票不卖出,但该票也不再买入\n stock_to_sell.extend(hit_stop_stock) # 将触发个股风控的股票融入到卖出票池\n stock_to_sell = [i for i in stock_to_sell if i not in stock_buy_and_sell] # 进行更新而已\n elif context.is_sell_willbuy_stock == True: # 要买入的股票依然要卖出,该票不再买入\n stock_to_sell.extend(hit_stop_stock)\n \n # 买入时需要过滤的股票\n context.cannot_buy_stock = stock_buy_and_sell\n \n for stock in stock_to_sell:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0)\n del context.portfolio.positions[context.symbol(stock)]\n\n\n#--------------------------------------------------------------------\n# 买入条件\n#-------------------------------------------------------------------- \ndef buy_action(context, data):\n date = data.current_dt.strftime('%Y-%m-%d')\n \n try:\n today_enter_stock = context.enter_daily_df.loc[date] \n except KeyError as e:\n today_enter_stock = []\n try:\n today_exit_stock = context.exit_daily_df.loc[date] \n except KeyError as e:\n today_exit_stock = []\n \n target_stock_to_buy = [i for i in context.selected_stock if i in today_enter_stock] \n target_stock_to_buy = [s for s in target_stock_to_buy if s not in context.cannot_buy_stock] # 进行更新,不能买入的股票要过滤\n \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] # 当前持仓股票\n \n # 确定股票权重\n if context.order_weight_method == 'equal_weight':\n equal_weight = 1 / context.max_stock_count\n \n portfolio_value = context.portfolio.portfolio_value\n position_current_value = {pos.sid: pos.amount* pos.last_sale_price for i,pos in context.portfolio.positions.items()}\n \n # 买入\n if context.trading_day_index % context.buy_frequency == 0:\n if len(stock_hold_now) >= context.max_stock_count:\n return \n \n today_buy_count = 0\n if context.trade_mode == '轮动':\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n if data.can_trade(context.symbol(s)):\n order_target_percent(context.symbol(s), equal_weight)\n today_buy_count += 1\n else:\n if context.can_duplication_buy == True: # 可以重复买入,多一份买入\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n \n if data.can_trade(context.symbol(s)):\n if context.symbol(s) in position_current_weight:\n curr_value = position_current_value.get(context.symbol(s)) \n order_value(context.symbol(s), min(context.max_stock_weight * portfolio_value - curr_value, equal_weight*portfolio_value))\n else:\n order_value(context.symbol(s), equal_weight*portfolio_value)\n today_buy_count += 1\n\n elif context.can_duplication_buy == False: # 不可以重复买入,不买\n for s in target_stock_to_buy:\n if today_buy_count + len(stock_hold_now) >= context.max_stock_count: # 超出最大持仓数量\n break\n if s in stock_hold_now:\n continue\n else:\n if data.can_trade(context.symbol(s)):\n order_target_percent(context.symbol(s), equal_weight)\n today_buy_count += 1\n\n \n#--------------------------------------------------------------------\n# 风控体系\n#-------------------------------------------------------------------- \ndef market_risk_manage(context, data):\n \"\"\"大盘风控\"\"\"\n date = data.current_dt.strftime('%Y-%m-%d')\n if type(context.index_signal_data) == pd.DataFrame:\n current_signal = context.index_signal_data.loc[date]['signal']\n if current_signal == 'short': \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('大盘出现止损信号, 平掉全部仓位,并关闭交易!')\n context.market_risk_signal = 'short'\n else:\n context.market_risk_signal = 'long'\n\n \n \ndef strategy_risk_manage(context, data):\n \"\"\"策略风控\"\"\"\n if context.strategy_risk_conf == []: # 没有设置策略风控\n context.strategy_risk_signal = 'long'\n \n else:\n for rm in context.strategy_risk_conf:\n if rm['method'] == 'strategy_percent_stopwin':\n pct = rm['params']['percent']\n portfolio_value = context.portfolio.portfolio_value \n if portfolio_value / context.capital_base - 1 > pct: \n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('策略出现止盈信号, 平掉全部仓位,并关闭交易!')\n context.strategy_risk_signal = 'short' \n \n \n if rm['method'] == 'strategy_percent_stoploss':\n pct = rm['params']['percent']\n portfolio_value = context.portfolio.portfolio_value \n if portfolio_value / context.capital_base -1 < pct:\n stock_hold_now = [equity.symbol for equity in context.portfolio.positions] \n # 平掉所有股票\n for stock in stock_hold_now:\n if data.can_trade(context.symbol(stock)):\n context.order_target_percent(context.symbol(stock), 0) \n print('策略出现止损信号, 平掉全部仓位,并关闭交易!')\n context.strategy_risk_signal = 'short'\n\n \ndef stock_risk_manage(context, data):\n \"\"\"个股风控\"\"\"\n position_current_pnl = {pos.sid: (pos.last_sale_price-pos.cost_basis)/pos.cost_basis for i,pos in context.portfolio.positions.items()}\n \n for rm in context.stock_risk_conf:\n params_pct = rm['params']['percent']\n if rm['method'] == 'stock_percent_stopwin':\n for sid,pnl_pct in position_current_pnl.items(): \n if pnl_pct > params_pct:\n context.stock_hit_stop.append(sid.symbol)\n \n if rm['method'] == 'stock_percent_stoploss':\n for sid,pnl_pct in position_current_pnl.items():\n if pnl_pct < params_pct:\n context.stock_hit_stop.append(sid.symbol)\n\n\n\n\n# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n \"\"\"每日运行策略逻辑\"\"\"\n market_risk_manage(context, data)\n strategy_risk_manage(context, data)\n \n if context.market_risk_signal == 'short': return\n if context.strategy_risk_signal == 'short': return\n\n stock_risk_manage(context, data)\n \n sell_action(context, data)\n buy_action(context, data)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n \n load_data = context.options['data'].read_pickle()\n context.signal_daily_stock = load_data['df1'].groupby('date').apply(lambda x:list(x.instrument))\n context.enter_daily_df = load_data['df2'].groupby('date').apply(lambda x:list(x.instrument))\n context.exit_daily_df = load_data['df3'].groupby('date').apply(lambda x:list(x.instrument))\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n \n \"\"\"每日盘前更新股票池\"\"\"\n frequency = context.rebalance_periods if context.trade_mode == '轮动' else context.stock_select_frequency\n if context.trading_day_index % frequency == 0:\n date = data.current_dt.strftime('%Y-%m-%d')\n try:\n context.selected_stock = context.signal_daily_stock[date] \n except KeyError as e:\n context.selected_stock = []\n \n \"\"\"初始化风控参数\"\"\"\n context.strategy_risk_signal = 'long'\n context.market_risk_signal = 'long' \n context.stock_hit_stop = []\n context.cannot_buy_stock = []\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":0,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-123"},{"name":"options_data","node_id":"-123"},{"name":"history_ds","node_id":"-123"},{"name":"benchmark_ds","node_id":"-123"},{"name":"trading_calendar","node_id":"-123"}],"output_ports":[{"name":"raw_perf","node_id":"-123"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true},{"node_id":"-185","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n df1 = input_1.read_df()\n df2 = input_2.read_df()\n df3 = input_3.read_df()\n\n if len(df1.index.names) == 2:\n df1.index.names = [None, None]\n else:\n df1.index.names = [None]\n \n df = {'df1':df1,'df2':df2,'df3':df3}\n ds = DataSource.write_pickle(df)\n return Outputs(data_1=ds)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-185"},{"name":"input_2","node_id":"-185"},{"name":"input_3","node_id":"-185"}],"output_ports":[{"name":"data_1","node_id":"-185"},{"name":"data_2","node_id":"-185"},{"name":"data_3","node_id":"-185"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true},{"node_id":"-550","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_index):\n # 示例代码如下。在这里编写您的代码\n start_date=input_1.read_pickle()['start_date']\n end_date=input_1.read_pickle()['end_date']\n df = DataSource('bar1d_index_CN_STOCK_A').read(instruments=[input_index],start_date=start_date,end_date=end_date,fields=['close'])\n data_1 = DataSource.write_df(df)\n return Outputs(data_1=data_1, data_2=None, data_3=None)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"input_1","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{'input_index':'000300.HIX'}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"data_1","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-550"},{"name":"input_2","node_id":"-550"},{"name":"input_3","node_id":"-550"}],"output_ports":[{"name":"data_1","node_id":"-550"},{"name":"data_2","node_id":"-550"},{"name":"data_3","node_id":"-550"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true},{"node_id":"-570","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"suspended","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-570"}],"output_ports":[{"name":"data","node_id":"-570"}],"cacheable":true,"seq_num":6,"comment":"获取股票停牌数据","comment_collapsed":false},{"node_id":"-575","module_id":"BigQuantSpace.use_datasource.use_datasource-v1","parameters":[{"name":"datasource_id","value":"stock_status_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-575"},{"name":"features","node_id":"-575"}],"output_ports":[{"name":"data","node_id":"-575"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true},{"node_id":"-582","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-582"},{"name":"data2","node_id":"-582"}],"output_ports":[{"name":"data","node_id":"-582"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true},{"node_id":"-297","module_id":"BigQuantSpace.cached.cached-v3","parameters":[{"name":"run","value":"# Python 代码入口函数,input_1/2/3 对应三个输入端,data_1/2/3 对应三个输出端\ndef bigquant_run(input_1, input_2, input_3):\n # 示例代码如下。在这里编写您的代码\n df = input_1.read_df()\n # 缺失值处理\n # if len(df)!=0:\n # df.dropna(inplace=True)\n \n # 选股条件\n if len(df)!=0:\n df_filter1 = df[df['cond1']>0]\n else:\n df_filter1 = df\n \n # 指标排序\n if len(df_filter1)!=0:\n df_filter2 = df_filter1.groupby('date').apply(lambda x:x.sort_values(by=['cond2'],ascending=True))\n else:\n df_filter2 = df_filter1\n \n #输出条件过滤股票池\n data_1 = DataSource.write_df(df_filter2)\n\n \n # 进场条件\n if len(df)!=0:\n df_buy = df[df['cond3']>0]\n else:\n df_buy = df\n # 输出满足进场条件的股票池\n data_2 = DataSource.write_df(df_buy)\n\n \n # 出场条件\n if len(df)!=0:\n df_sell = df[df['cond4']>0]\n else:\n df_sell = df\n # 输出满足出场条件的股票池\n data_3 = DataSource.write_df(df_sell) \n \n return Outputs(data_1=data_1, data_2=data_2, data_3=data_3)\n","type":"Literal","bound_global_parameter":null},{"name":"post_run","value":"# 后处理函数,可选。输入是主函数的输出,可以在这里对数据做处理,或者返回更友好的outputs数据格式。此函数输出不会被缓存。\ndef bigquant_run(outputs):\n return outputs\n","type":"Literal","bound_global_parameter":null},{"name":"input_ports","value":"","type":"Literal","bound_global_parameter":null},{"name":"params","value":"{}","type":"Literal","bound_global_parameter":null},{"name":"output_ports","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-297"},{"name":"input_2","node_id":"-297"},{"name":"input_3","node_id":"-297"}],"output_ports":[{"name":"data_1","node_id":"-297"},{"name":"data_2","node_id":"-297"},{"name":"data_3","node_id":"-297"}],"cacheable":true,"seq_num":22,"comment":"","comment_collapsed":true},{"node_id":"-121","module_id":"BigQuantSpace.stockpool_select.stockpool_select-v6","parameters":[{"name":"self_instruments","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_concepts","value":"[]","type":"Literal","bound_global_parameter":null},{"name":"input_industrys","value":"[360000,710000,220000,460000,370000,330000,340000,720000,240000,630000,280000,420000,510000,640000,610000,620000,650000,230000,410000,350000,490000,110000,210000,480000,730000,450000,270000,430000]","type":"Literal","bound_global_parameter":null},{"name":"input_indexs","value":"['沪深300']","type":"Literal","bound_global_parameter":null},{"name":"input_st","value":"过滤","type":"Literal","bound_global_parameter":null},{"name":"input_suspend","value":"过滤","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-121"}],"output_ports":[{"name":"data","node_id":"-121"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='473,-148,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='697,-231,200,200'/><node_position Node='-228' Position='479,-22,200,200'/><node_position Node='-234' Position='145,-30,200,200'/><node_position Node='-253' Position='341,161,200,200'/><node_position Node='-235' Position='483,70,200,200'/><node_position Node='-270' Position='124,-149,200,200'/><node_position Node='-123' Position='563,687,200,200'/><node_position Node='-185' Position='454,577.3565063476562,200,200'/><node_position Node='-550' Position='878,511,200,200'/><node_position Node='-570' Position='960,-137,200,200'/><node_position Node='-575' Position='840,-16,200,200'/><node_position Node='-582' Position='557,241,200,200'/><node_position Node='-297' Position='453,455,200,200'/><node_position Node='-121' Position='457,355,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2022-04-05 21:29:43.405810] INFO: moduleinvoker: instruments.v2 开始运行..
[2022-04-05 21:29:43.635945] INFO: moduleinvoker: instruments.v2 运行完成[0.230138s].
[2022-04-05 21:29:43.648354] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-05 21:29:43.821913] INFO: moduleinvoker: cached.v3 运行完成[0.173553s].
[2022-04-05 21:29:43.826593] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-05 21:29:43.838752] INFO: moduleinvoker: 命中缓存
[2022-04-05 21:29:43.840768] INFO: moduleinvoker: input_features.v1 运行完成[0.01418s].
[2022-04-05 21:29:43.856553] INFO: moduleinvoker: general_feature_extractor.v7 开始运行..
[2022-04-05 21:29:47.317196] INFO: 基础特征抽取: 年份 2015, 特征行数=475482
[2022-04-05 21:29:50.851926] INFO: 基础特征抽取: 年份 2016, 特征行数=641546
[2022-04-05 21:29:55.303953] INFO: 基础特征抽取: 年份 2017, 特征行数=743233
[2022-04-05 21:29:59.816697] INFO: 基础特征抽取: 年份 2018, 特征行数=816987
[2022-04-05 21:30:05.446796] INFO: 基础特征抽取: 年份 2019, 特征行数=884867
[2022-04-05 21:30:11.309897] INFO: 基础特征抽取: 年份 2020, 特征行数=945961
[2022-04-05 21:30:17.792178] INFO: 基础特征抽取: 年份 2021, 特征行数=1061527
[2022-04-05 21:30:17.887346] INFO: 基础特征抽取: 总行数: 5569603
[2022-04-05 21:30:17.902084] INFO: moduleinvoker: general_feature_extractor.v7 运行完成[34.04557s].
[2022-04-05 21:30:17.914380] INFO: moduleinvoker: derived_feature_extractor.v3 开始运行..
[2022-04-05 21:30:42.315706] INFO: derived_feature_extractor: 提取完成 cond1=(list_days_0>180)&(ta_macd(close_0/adjust_factor_0, fastperiod=12, slowperiod=26, signalperiod=26, derive='long')), 14.913s
[2022-04-05 21:30:53.049238] INFO: derived_feature_extractor: 提取完成 cond2=rank(ta_bbands_l(close_0/adjust_factor_0, timeperiod=5,nbdevup=2,nbdevdn=2) * 1)*1.00, 10.732s
[2022-04-05 21:31:00.646918] INFO: derived_feature_extractor: 提取完成 cond3=(ta_bbands_u(close_0/adjust_factor_0, timeperiod=5, nbdevup=2, nbdevdn=2)>0), 7.596s
[2022-04-05 21:31:08.747185] INFO: derived_feature_extractor: 提取完成 cond4=(ta_bbands_l(close_0/adjust_factor_0, timeperiod=5, nbdevup=2, nbdevdn=2)<1), 8.099s
[2022-04-05 21:31:09.627344] INFO: derived_feature_extractor: /y_2015, 475482
[2022-04-05 21:31:10.768202] INFO: derived_feature_extractor: /y_2016, 641546
[2022-04-05 21:31:12.089443] INFO: derived_feature_extractor: /y_2017, 743233
[2022-04-05 21:31:13.624599] INFO: derived_feature_extractor: /y_2018, 816987
[2022-04-05 21:31:15.291364] INFO: derived_feature_extractor: /y_2019, 884867
[2022-04-05 21:31:16.958238] INFO: derived_feature_extractor: /y_2020, 945961
[2022-04-05 21:31:18.932759] INFO: derived_feature_extractor: /y_2021, 1061527
[2022-04-05 21:31:19.359161] INFO: moduleinvoker: derived_feature_extractor.v3 运行完成[61.44479s].
[2022-04-05 21:31:19.363978] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-05 21:31:19.379927] INFO: moduleinvoker: 命中缓存
[2022-04-05 21:31:19.381411] INFO: moduleinvoker: input_features.v1 运行完成[0.017437s].
[2022-04-05 21:31:19.396234] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-04-05 21:31:24.814236] INFO: moduleinvoker: use_datasource.v1 运行完成[5.41799s].
[2022-04-05 21:31:24.824089] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-05 21:31:47.128731] INFO: join: /y_2015, 行数=0/475482, 耗时=2.657887s
[2022-04-05 21:31:50.966168] INFO: join: /y_2016, 行数=641546/641546, 耗时=3.833441s
[2022-04-05 21:31:54.327966] INFO: join: /y_2017, 行数=743233/743233, 耗时=3.354198s
[2022-04-05 21:31:57.778890] INFO: join: /y_2018, 行数=816987/816987, 耗时=3.442001s
[2022-04-05 21:32:01.463784] INFO: join: /y_2019, 行数=884867/884867, 耗时=3.675107s
[2022-04-05 21:32:05.552876] INFO: join: /y_2020, 行数=945960/945961, 耗时=4.074742s
[2022-04-05 21:32:09.920111] INFO: join: /y_2021, 行数=1061527/1061527, 耗时=4.350569s
[2022-04-05 21:32:10.090878] INFO: join: 最终行数: 5094120
[2022-04-05 21:32:10.239176] INFO: moduleinvoker: join.v3 运行完成[45.415098s].
[2022-04-05 21:32:10.244746] INFO: moduleinvoker: input_features.v1 开始运行..
[2022-04-05 21:32:10.255883] INFO: moduleinvoker: 命中缓存
[2022-04-05 21:32:10.258593] INFO: moduleinvoker: input_features.v1 运行完成[0.013835s].
[2022-04-05 21:32:10.264704] INFO: moduleinvoker: use_datasource.v1 开始运行..
[2022-04-05 21:32:11.671228] INFO: moduleinvoker: use_datasource.v1 运行完成[1.406514s].
[2022-04-05 21:32:11.679964] INFO: moduleinvoker: join.v3 开始运行..
[2022-04-05 21:32:21.150314] INFO: join: /y_2015, 行数=0/0, 耗时=1.288106s
[2022-04-05 21:32:24.905526] INFO: join: /y_2016, 行数=641546/641546, 耗时=3.753658s
[2022-04-05 21:32:29.189395] INFO: join: /y_2017, 行数=743233/743233, 耗时=4.275346s
[2022-04-05 21:32:33.728486] INFO: join: /y_2018, 行数=816987/816987, 耗时=4.529015s
[2022-04-05 21:32:38.678096] INFO: join: /y_2019, 行数=884867/884867, 耗时=4.937294s
[2022-04-05 21:32:44.559510] INFO: join: /y_2020, 行数=945960/945960, 耗时=5.858761s
[2022-04-05 21:32:51.180191] INFO: join: /y_2021, 行数=1061527/1061527, 耗时=6.588904s
[2022-04-05 21:32:51.379352] INFO: join: 最终行数: 5094120
[2022-04-05 21:32:51.409876] INFO: moduleinvoker: join.v3 运行完成[39.729888s].
[2022-04-05 21:32:51.418039] INFO: moduleinvoker: stockpool_select.v6 开始运行..
[2022-04-05 21:44:03.718274] INFO: moduleinvoker: stockpool_select.v6 运行完成[672.30024s].
[2022-04-05 21:44:03.735458] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-05 21:44:06.801210] INFO: moduleinvoker: cached.v3 运行完成[3.065761s].
[2022-04-05 21:44:06.813377] INFO: moduleinvoker: cached.v3 开始运行..
[2022-04-05 21:44:07.482221] INFO: moduleinvoker: cached.v3 运行完成[0.668808s].
[2022-04-05 21:44:07.537936] INFO: moduleinvoker: backtest.v8 开始运行..
[2022-04-05 21:44:07.544002] INFO: backtest: biglearning backtest:V8.6.2
[2022-04-05 21:44:08.413409] INFO: backtest: product_type:stock by specified
[2022-04-05 21:44:08.487174] INFO: moduleinvoker: cached.v2 开始运行..
[2022-04-05 21:44:24.757115] INFO: backtest: 读取股票行情完成:6450846
[2022-04-05 21:44:29.773568] INFO: moduleinvoker: cached.v2 运行完成[21.286407s].
[2022-04-05 21:44:36.367744] INFO: algo: TradingAlgorithm V1.8.7
[2022-04-05 21:44:39.039078] INFO: algo: trading transform...
[2022-04-05 21:44:40.722250] ERROR: moduleinvoker: module name: backtest, module version: v8, trackeback: NameError: name 'position_current_weight' is not defined
[2022-04-05 21:44:40.728084] ERROR: moduleinvoker: module name: trade, module version: v4, trackeback: NameError: name 'position_current_weight' is not defined
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-2-156ac7e938ff> in <module>
536 )
537
--> 538 m4 = M.trade.v4(
539 instruments=m1.data,
540 options_data=m17.data_1,
<ipython-input-2-156ac7e938ff> in m4_handle_data_bigquant_run(context, data)
380
381 sell_action(context, data)
--> 382 buy_action(context, data)
383
384 # 回测引擎:准备数据,只执行一次
<ipython-input-2-156ac7e938ff> in buy_action(context, data)
276
277 if data.can_trade(context.symbol(s)):
--> 278 if context.symbol(s) in position_current_weight:
279 curr_value = position_current_value.get(context.symbol(s))
280 order_value(context.symbol(s), min(context.max_stock_weight * portfolio_value - curr_value, equal_weight*portfolio_value))
NameError: name 'position_current_weight' is not defined