噪音层

# 噪音层

# AlphaDropout层 (v1)

​ M.dl_layer_alphadropout.v1(rate, noise_shape=None, seed=None)
将 Alpha Dropout 应用到输入。

Alpha Dropout是一种 Dropout,它保持输入的平均值和方差与原来的值不变, 已在 dropout 之后仍然保证数据的自规范性。 通过随机将激活设置为负饱和值,Alpha Dropout 非常适合按比例缩放的指数线性单元(SELU)。

参数

  • rate: float,丢弃概率(与 Dropout 相同)。 这个乘性噪声的标准差为 sqrt(rate / (1 - rate))。
  • seed: 用作随机种子的 Python 整数。

输入尺寸

可以是任意的。 如果将该层作为模型的第一层,则需要指定 input_shape 参数 (整数元组,不包含样本数量的维度)。

输出尺寸

与输入相同。

# GaussianDropout(v1)

M.dl_layer_gaussiandropout.v1(rate)

应用以 1 为中心的 乘性高斯噪声。

由于它是一个正则化层,因此它只在训练时才被激活。

参数

  • rate: float,丢弃概率(与 Dropout 相同)。 这个乘性噪声的标准差为 sqrt(rate / (1 - rate))。

输入尺寸

可以是任意的。 如果将该层作为模型的第一层,则需要指定 input_shape 参数 (整数元组,不包含样本数量的维度)。

输出尺寸

与输入相同。

# GaussianNoise(v1)

M.dl_layer_gaussiannoise.v1(stddev)

应用以 0 为中心的加性高斯噪声。

这对缓解过拟合很有用 (你可以将其视为随机数据增强的一种形式)。 高斯噪声(GS)是对真实输入的腐蚀过程的自然选择。

由于它是一个正则化层,因此它只在训练时才被激活。

参数

  • stddev: float,噪声分布的标准差。

输入尺寸

可以是任意的。 如果将该层作为模型的第一层,则需要指定 input_shape 参数 (整数元组,不包含样本数量的维度)。

输出尺寸

与输入相同。

# LocallyConnected1D(v1)

M.dl_layer_locallyconnected1d.v1(filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

1D 输入的局部连接层。

LocallyConnected1D 层与 Conv1D 层的工作方式相同,除了权值不共享外, 也就是说,在输入的每个不同部分应用不同的一组过滤器。

参数

  • filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量)。
  • kernel_size: 一个整数,或者单个整数表示的元组或列表, 指明 1D 卷积窗口的长度。
  • strides: 一个整数,或者单个整数表示的元组或列表, 指明卷积的步长。 指定任何 stride 值 != 1 与指定 dilation_rate 值 != 1 两者不兼容。
  • padding: 当前仅支持 "valid" (大小写敏感)。 "same" 可能会在未来支持。
  • activation: 要使用的激活函数 (详见 activations)。 如果你不指定,则不使用激活函数 (即线性激活: a(x) = x)。
  • use_bias: 布尔值,该层是否使用偏置向量。
  • kernel_initializer: kernel 权值矩阵的初始化器 (详见 initializers)。
  • bias_initializer: 偏置向量的初始化器 (详见 initializers)。
  • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
  • bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
  • activity_regularizer: 运用到层输出(它的激活值)的正则化函数 (详见 regularizer)。
  • kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
  • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

输入尺寸

3D 张量,尺寸为: (batch_size, steps, input_dim)。

输出尺寸

3D 张量 ,尺寸为:(batch_size, new_steps, filters), steps 值可能因填充或步长而改变。

# LocallyConnected2D(v1)

M.dl_layer_locallyconnected2d.v1(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

2D 输入的局部连接层。

LocallyConnected2D 层与 Conv2D 层的工作方式相同,除了权值不共享外, 也就是说,在输入的每个不同部分应用不同的一组过滤器。

参数

  • filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量)。
  • kernel_size: 一个整数,或者 2 个整数表示的元组或列表, 指明 2D 卷积窗口的宽度和高度。 可以是一个整数,为所有空间维度指定相同的值。
  • strides: 一个整数,或者 2 个整数表示的元组或列表, 指明卷积沿宽度和高度方向的步长。 可以是一个整数,为所有空间维度指定相同的值。
  • padding: 当前仅支持 "valid" (大小写敏感)。 "same" 可能会在未来支持。
  • data_format: 字符串, channels_last (默认) 或 channels_first 之一。 输入中维度的顺序。 channels_last 对应输入尺寸为 (batch, height, width, channels), channels_first
    对应输入尺寸为 (batch, channels, height, width)。 它默认为从 Keras 配置文件 ~/.keras/keras.json 中 找到的 image_data_format 值。 如果你从未设置它,将使用"channels_last"。
  • activation: 要使用的激活函数 (详见 activations)。 如果你不指定,则不使用激活函数 (即线性激活: a(x) = x)。
  • use_bias: 布尔值,该层是否使用偏置向量。
  • kernel_initializer: kernel 权值矩阵的初始化器 (详见 initializers)。
  • bias_initializer: 偏置向量的初始化器 (详见 initializers)。
  • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
  • bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
  • activity_regularizer: 运用到层输出(它的激活值)的正则化函数 (详见 regularizer)。
  • kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
  • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

输入尺寸

4D 张量,尺寸为: (samples, channels, rows, cols),如果
data_format='channels_first'; 或者 4D 张量,尺寸为: (samples, rows, cols,
channels),如果 data_format='channels_last'。

输出尺寸

4D 张量,尺寸为: (samples, filters, new_rows, new_cols),如果
data_format='channels_first'; 或者 4D 张量,尺寸为: (samples, new_rows,
new_cols, filters),如果 data_format='channels_last'。 rows 和 cols的值可能因填充而改变。