rank_avg_mf_net_amount_$i因子为空


(oversky2003) #1

请问如何处理?


(达达) #2

我这边有数据

克隆策略

    {"Description":"实验创建于2019/8/27","Summary":"","Graph":{"EdgesInternal":[{"DestinationInputPortId":"-26:features","SourceOutputPortId":"-13:data"},{"DestinationInputPortId":"-26:instruments","SourceOutputPortId":"-17:data"}],"ModuleNodes":[{"Id":"-13","ModuleId":"BigQuantSpace.input_features.input_features-v1","ModuleParameters":[{"Name":"features","Value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nrank_avg_mf_net_amount_9","ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features_ds","NodeId":"-13"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-13","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":2,"Comment":"","CommentCollapsed":true},{"Id":"-17","ModuleId":"BigQuantSpace.instruments.instruments-v2","ModuleParameters":[{"Name":"start_date","Value":"2019-01-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"2019-05-01","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"market","Value":"CN_STOCK_A","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"instrument_list","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"max_count","Value":0,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"rolling_conf","NodeId":"-17"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-17","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":3,"Comment":"","CommentCollapsed":true},{"Id":"-26","ModuleId":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","ModuleParameters":[{"Name":"start_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"end_date","Value":"","ValueType":"Literal","LinkedGlobalParameter":null},{"Name":"before_start_days","Value":90,"ValueType":"Literal","LinkedGlobalParameter":null}],"InputPortsInternal":[{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"instruments","NodeId":"-26"},{"DataSourceId":null,"TrainedModelId":null,"TransformModuleId":null,"Name":"features","NodeId":"-26"}],"OutputPortsInternal":[{"Name":"data","NodeId":"-26","OutputType":null}],"UsePreviousResults":true,"moduleIdForCode":1,"Comment":"","CommentCollapsed":true}],"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions><NodePosition Node='-13' Position='550,100,200,200'/><NodePosition Node='-17' Position='225,110,200,200'/><NodePosition Node='-26' Position='407,248,200,200'/></NodePositions><NodeGroups /></DataV1>"},"IsDraft":true,"ParentExperimentId":null,"WebService":{"IsWebServiceExperiment":false,"Inputs":[],"Outputs":[],"Parameters":[{"Name":"交易日期","Value":"","ParameterDefinition":{"Name":"交易日期","FriendlyName":"交易日期","DefaultValue":"","ParameterType":"String","HasDefaultValue":true,"IsOptional":true,"ParameterRules":[],"HasRules":false,"MarkupType":0,"CredentialDescriptor":null}}],"WebServiceGroupId":null,"SerializedClientData":"<?xml version='1.0' encoding='utf-16'?><DataV1 xmlns:xsd='http://www.w3.org/2001/XMLSchema' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><Meta /><NodePositions></NodePositions><NodeGroups /></DataV1>"},"DisableNodesUpdate":false,"Category":"user","Tags":[],"IsPartialRun":true}
    In [5]:
    # 本代码由可视化策略环境自动生成 2019年8月27日 17:13
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
    
    
    m2 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    rank_avg_mf_net_amount_9"""
    )
    
    m3 = M.instruments.v2(
        start_date='2019-01-01',
        end_date='2019-05-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    m1 = M.general_feature_extractor.v7(
        instruments=m3.data,
        features=m2.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    In [7]:
    m1.data.read_df().head()
    
    Out[7]:
    date instrument rank_avg_mf_net_amount_9
    606288 2018-10-08 000001.SZA 0.999420
    606289 2018-10-08 000002.SZA 0.000290
    606290 2018-10-08 000005.SZA 0.326572
    606291 2018-10-08 000006.SZA 0.004636
    606292 2018-10-08 000007.SZA 0.937120

    (oversky2003) #3

    rank_avg_mf_net_amount_0 , 0的时候没有数据


    (达达) #4

    新版本数据会修复