{"description":"实验创建于2023/2/10","graph":{"edges":[{"to_node_id":"-23:features","from_node_id":"-30:data"},{"to_node_id":"-55:input_2","from_node_id":"-30:data"},{"to_node_id":"-23:input_data","from_node_id":"-38:data"},{"to_node_id":"-38:instruments","from_node_id":"-31:data"},{"to_node_id":"-63:instruments","from_node_id":"-31:data"},{"to_node_id":"-55:input_1","from_node_id":"-23:data"},{"to_node_id":"-63:options_data","from_node_id":"-55:data"}],"nodes":[{"node_id":"-30","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nproduct(close/open,5)\nstd(amount,10)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-30"}],"output_ports":[{"name":"data","node_id":"-30"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true,"x":303,"y":-154},{"node_id":"-38","module_id":"BigQuantSpace.use_datasource.use_datasource-v2","parameters":[{"name":"datasource_id","value":"bar1d_CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"30","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-38"},{"name":"features","node_id":"-38"}],"output_ports":[{"name":"data","node_id":"-38"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true,"x":67,"y":-61},{"node_id":"-31","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2017-12-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-12-31","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_FUND","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"510050.HOF\n510300.HOF\n510500.HOF\n512100.HOF\n159915.ZOF\n515100.HOF\n510900.HOF\n159938.ZOF\n159928.ZOF\n512660.HOF\n515220.HOF\n159869.ZOF\n159792.ZOF\n512480.HOF\n515790.HOF\n512930.HOF\n516160.HOF\n","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-31"}],"output_ports":[{"name":"data","node_id":"-31"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true,"x":-11,"y":-155},{"node_id":"-23","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"True","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-23"},{"name":"features","node_id":"-23"}],"output_ports":[{"name":"data","node_id":"-23"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true,"x":129,"y":57},{"node_id":"-63","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n #context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n\n \n #读取数据\n context.ranker_prediction = context.options['data'].read_df()\n context.ranker_prediction.set_index('date',inplace=True)\n \n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 交易引擎:bar数据处理函数,每个时间单位执行一次\ndef bigquant_run(context, data):\n \n # 调仓时间,1就是一天一调仓\n remainder = context.trading_day_index % 5\n #如果没到调仓期直接结束运行\n if remainder !=0:\n return\n \n \n import datetime\n #初始化\n \n #==================== 数据准备\n today = data.current_dt.strftime('%Y-%m-%d')\n time = data.current_dt\n\n #获取持仓\n holding_list = [equity.symbol for equity in context.portfolio.positions]\n holding_num = len(holding_list)\n \n # 持有股票的数量\n #holding_num = len(holding_list)\n\n #读取当日数据\n try:\n today_data = context.ranker_prediction.loc[today,:]\n today_data.reset_index(inplace=True)\n except:\n return\n \n \n # 根据权重计算排序得分\n today_data['std_score'] = today_data['std(amount,10)'].rank(ascending=True)\n today_data['return_score'] = today_data['product(close/open,5)'].rank(ascending=True)\n\n # 计算总得分并按照总得分进行排序\n today_data['total_score'] = today_data['std_score'] #+today_data['return_score']\n today_data.sort_values(by='total_score',ascending=True,inplace=True)\n \n \n #构建保留目标列表\n target_buy_list = today_data.instrument.to_list()[:2]\n\n #构建卖出列表\n for ins in holding_list:\n if ins not in target_buy_list:\n context.order_target(context.symbol(ins),0)\n #sell_list.append(ins)\n \n #print(today)\n #print('holding_list:',holding_list)\n #print('target_buy_list:',target_buy_list)\n \n #构建买入列表\n for ins in target_buy_list:\n if ins not in holding_list: \n context.order_percent(context.symbol(ins),0.48)\n","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.HIX","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-63"},{"name":"options_data","node_id":"-63"},{"name":"history_ds","node_id":"-63"},{"name":"benchmark_ds","node_id":"-63"},{"name":"trading_calendar","node_id":"-63"}],"output_ports":[{"name":"raw_perf","node_id":"-63"}],"cacheable":false,"seq_num":4,"comment":"","comment_collapsed":true,"x":86,"y":277},{"node_id":"-55","module_id":"BigQuantSpace.standardlize.standardlize-v12","parameters":[{"name":"standard_func","value":"ZScoreNorm","type":"Literal","bound_global_parameter":null},{"name":"columns_input","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_1","node_id":"-55"},{"name":"input_2","node_id":"-55"}],"output_ports":[{"name":"data","node_id":"-55"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true,"x":138,"y":156}],"node_layout":"<node_postions><node_position Node='-30' Position='303,-154,200,200'/><node_position Node='-38' Position='67,-61,200,200'/><node_position Node='-31' Position='-11,-155,200,200'/><node_position Node='-23' Position='129,57,200,200'/><node_position Node='-63' Position='86,277,200,200'/><node_position Node='-55' Position='138,156,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [5]:
    # 本代码由可视化策略环境自动生成 2024年1月2日 22:56
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
     
    # 显式导入 BigQuant 相关 SDK 模块
    from bigdatasource.api import DataSource
    from bigdata.api.datareader import D
    from biglearning.api import M
    from biglearning.api import tools as T
    from biglearning.module2.common.data import Outputs
     
    import pandas as pd
    import numpy as np
    import math
    import warnings
    import datetime
     
    from zipline.finance.commission import PerOrder
    from zipline.api import get_open_orders
    from zipline.api import symbol
     
    from bigtrader.sdk import *
    from bigtrader.utils.my_collections import NumPyDeque
    from bigtrader.constant import OrderType
    from bigtrader.constant import Direction
    
    # <aistudiograph>
    
    # @param(id="m4", name="initialize")
    # 交易引擎:初始化函数,只执行一次
    def m4_initialize_bigquant_run(context):
        #context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    
        
        #读取数据
        context.ranker_prediction = context.options['data'].read_df()
        context.ranker_prediction.set_index('date',inplace=True)
        
    
    # @param(id="m4", name="handle_data")
    # 交易引擎:bar数据处理函数,每个时间单位执行一次
    def m4_handle_data_bigquant_run(context, data):
        
        # 调仓时间,1就是一天一调仓
        remainder = context.trading_day_index % 5
        #如果没到调仓期直接结束运行
        if remainder !=0:
            return
            
        
        import datetime
        #初始化
        
        #==================== 数据准备
        today = data.current_dt.strftime('%Y-%m-%d')
        time = data.current_dt
    
        #获取持仓
        holding_list  = [equity.symbol for equity in context.portfolio.positions]
        holding_num = len(holding_list)
        
        # 持有股票的数量
        #holding_num = len(holding_list)
    
        #读取当日数据
        try:
            today_data  = context.ranker_prediction.loc[today,:]
            today_data.reset_index(inplace=True)
        except:
            return
        
        
        # 根据权重计算排序得分
        today_data['std_score'] = today_data['std(amount,10)'].rank(ascending=True)
        today_data['return_score'] = today_data['product(close/open,5)'].rank(ascending=True)
    
        # 计算总得分并按照总得分进行排序
        today_data['total_score'] = today_data['std_score'] #+today_data['return_score']
        today_data.sort_values(by='total_score',ascending=True,inplace=True)
     
        
        #构建保留目标列表
        target_buy_list = today_data.instrument.to_list()[:2]
    
        #构建卖出列表
        for ins in holding_list:
            if ins not in target_buy_list:
                context.order_target(context.symbol(ins),0)
                #sell_list.append(ins)
            
        #print(today)
        #print('holding_list:',holding_list)
        #print('target_buy_list:',target_buy_list)
        
        #构建买入列表
        for ins in target_buy_list:
            if ins not in holding_list: 
                context.order_percent(context.symbol(ins),0.48)
    
    # @param(id="m4", name="prepare")
    # 回测引擎:准备数据,只执行一次
    def m4_prepare_bigquant_run(context):
        pass
    
    # @param(id="m4", name="before_trading_start")
    # 回测引擎:每个单位时间开始前调用一次,即每日开盘前调用一次。
    def m4_before_trading_start_bigquant_run(context, data):
        pass
    
    
    # @module(position="303,-154", comment='', comment_collapsed=True)
    m2 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    product(close/open,5)
    std(amount,10)"""
    )
    
    # @module(position="-11,-155", comment='', comment_collapsed=True)
    m3 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2017-12-01'),
        end_date=T.live_run_param('trading_date', '2023-12-31'),
        market='CN_FUND',
        instrument_list="""510050.HOF
    510300.HOF
    510500.HOF
    512100.HOF
    159915.ZOF
    515100.HOF
    510900.HOF
    159938.ZOF
    159928.ZOF
    512660.HOF
    515220.HOF
    159869.ZOF
    159792.ZOF
    512480.HOF
    515790.HOF
    512930.HOF
    516160.HOF
    """,
        max_count=0
    )
    
    # @module(position="67,-61", comment='', comment_collapsed=True)
    m5 = M.use_datasource.v2(
        instruments=m3.data,
        datasource_id='bar1d_CN_FUND',
        start_date='',
        end_date='',
        before_start_days=30
    )
    
    # @module(position="129,57", comment='', comment_collapsed=True)
    m1 = M.derived_feature_extractor.v3(
        input_data=m5.data,
        features=m2.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=True,
        remove_extra_columns=True,
        user_functions={}
    )
    
    # @module(position="138,156", comment='', comment_collapsed=True)
    m6 = M.standardlize.v12(
        input_1=m1.data,
        input_2=m2.data,
        standard_func='ZScoreNorm',
        columns_input=''
    )
    
    # @module(position="86,277", comment='', comment_collapsed=True)
    m4 = M.trade.v4(
        instruments=m3.data,
        options_data=m6.data,
        start_date='',
        end_date='',
        initialize=m4_initialize_bigquant_run,
        handle_data=m4_handle_data_bigquant_run,
        prepare=m4_prepare_bigquant_run,
        before_trading_start=m4_before_trading_start_bigquant_run,
        volume_limit=0,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.HIX'
    )
    # </aistudiograph>
    
    Trade(回测/模拟)
    • 收益率96.51%
    • 年化收益率12.21%
    • 基准收益率-14.35%
    • 阿尔法0.15
    • 贝塔0.86
    • 夏普比率0.51
    • 胜率0.65
    • 盈亏比2.78
    • 收益波动率21.28%
    • 信息比率0.07
    • 最大回撤34.02%