详细逻辑

1、获取账号及基本信息

2、获取持仓及成本价

3、获取当前时间

4、获取高开低收

5、持久化中间变量

6、加止盈止损

7、计算技术指标

8、修改手续费

9、常用下单API

    {"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-41:sql","from_node_id":"-42:data"},{"to_node_id":"-52:data","from_node_id":"-41:data"}],"nodes":[{"node_id":"-42","module_id":"BigQuantSpace.input_features_dai.input_features_dai-v6","parameters":[{"name":"sql","value":"-- 使用DAI SQL获取数据,构建因子等,如下是一个例子作为参考\n-- DAI SQL 语法: https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-sql%E5%85%A5%E9%97%A8%E6%95%99%E7%A8%8B\n\nSELECT\n -- 【在这里输入因子表达式】\n -- DAI SQL 算子/函数: https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-%E5%87%BD%E6%95%B0\n -- 数据&字段: 数据文档 https://bigquant.com/data/home\n -- 使用在时间截面的total_market_cap排名、五日日均成交量m_avg(amount_0, 5)作为本模版的两个因子\n -- 这里使用了DAI提供的normalize函数对因子进行z-score标准化处理以在多因子线性合成时不被量纲影响\n -- 还可以增加系数调节因子权重,这里对第二个因子简单地添加了0.9的系数,在这个示例中没有经济学意义\n -- 另外可以使用DAI提供的cut_outliers函数去极值,c_indneutralize、c_neutralize函数进行行业、行业市值中性化\n 0.4*normalize(total_market_cap) + 0.6*normalize(m_avg(amount_0, 5)) AS score,\n\n -- 日期,这是每个股票每天的数据\n date,\n -- 股票代码,代表每一支股票\n instrument\n-- 预计算因子和数据 cn_stock_factors https://bigquant.com/data/datasources/cn_stock_factors\nFROM cn_stock_factors\n\n-- where 数据过滤\nWHERE\n st_status = 0\n \n-- QUALIFY 数据过滤,支持过滤窗口函数,在 WHERE 之后才执行窗口函数。这里简化了一下,都放到QUALIFY了。对于专业用户建议分开WHERE和QUALIFY,有更好的升性能和准确性\nQUALIFY\n -- 剔除ST股票\n st_status = 0\n -- 上市天数 > 270, 过滤掉新股\n AND list_days > 270\n -- 要求 pe > 0,-- 表示注释\n -- AND pe_ttm > 0\n -- 非停牌股\n AND suspended = 0\n -- 不属于北交所\n AND list_sector < 4\n -- 去掉有空值的行\n AND COLUMNS(*) IS NOT NULL\n\n-- 按因子值排名,从小到大\nORDER BY date, score\n","type":"Literal","bound_global_parameter":null}],"input_ports":[],"output_ports":[{"name":"data","node_id":"-42"}],"cacheable":true,"seq_num":1,"comment":"通过SQL调用数据、因子和表达式等构建策略逻辑","comment_collapsed":false,"x":-230.81489825248718,"y":-6},{"node_id":"-41","module_id":"BigQuantSpace.extract_data_dai.extract_data_dai-v7","parameters":[{"name":"start_date","value":"2023-01-01","type":"Literal","bound_global_parameter":null},{"name":"start_date_bound_to_trading_date","value":"True","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2023-10-31","type":"Literal","bound_global_parameter":null},{"name":"end_date_bound_to_trading_date","value":"True","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null},{"name":"debug","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"sql","node_id":"-41"}],"output_ports":[{"name":"data","node_id":"-41"}],"cacheable":true,"seq_num":2,"comment":"抽取数据,设置数据开始时间和结束时间,并绑定模拟交易","comment_collapsed":false,"x":-132,"y":132},{"node_id":"-52","module_id":"BigQuantSpace.bigtrader.bigtrader-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n\n # 持有期/调仓周期,1天,3天,5天等\n context.holding_days = 1\n # 设置买入股票数量\n context.target_hold_count = 10\n # 每只股票的目标权重\n context.target_percent_per_instrument = 1.0 / context.target_hold_count\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"def bigquant_run(context, data):\n \n # 止盈止损\n # stop_pos(context, data)\n\n # 每 context.holding_days 个交易日调仓一次\n if context.trading_day_index % context.holding_days != 0:\n return\n\n \n \n # 获取当前日期\n current_date = data.current_dt.strftime(\"%Y-%m-%d\")\n # 获取当日数据\n current_day_data = context.data[context.data[\"date\"] == current_date]\n # 取前10只\n current_day_data = current_day_data.head(context.target_hold_count)\n # 获取当日目标持有股票\n target_hold_instruments = set(current_day_data[\"instrument\"])\n # 获取当前已持有股票\n current_hold_instruments = set(context.get_account_positions().keys())\n\n # 卖出不在目标持有列表中的股票\n for instrument in current_hold_instruments - target_hold_instruments:\n context.order_target_percent(instrument, 0)\n \n # 买入目标持有列表中的股票\n for instrument in target_hold_instruments - current_hold_instruments:\n context.order_target_percent(instrument, context.target_percent_per_instrument)\n\n \n \n if context.trading_day_index == 5:\n #获取当前时间 pydatetime 类型\n time = data.current_dt \n #将时间格式转为年月日\n date = data.current_dt.date()\n print('date:', date)\n \n cash = context.portfolio.cash\n print('cash:', cash)\n \n pos = context.get_account_positions()\n print('positions:', pos)\n \n \n instrument = '000002.SZ'\n stock_market_price = data.current(instrument, 'price') \n print('最新价格:', stock_market_price)\n\n \n df = data.history(instrument, [\"close\", \"volume\"], 30, '1d')\n print('k 线数据:', df)\n\n \n \n","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SH","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"True","type":"Literal","bound_global_parameter":null},{"name":"debug","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data","node_id":"-52"},{"name":"options_data","node_id":"-52"},{"name":"history_ds","node_id":"-52"},{"name":"benchmark_ds","node_id":"-52"}],"output_ports":[{"name":"raw_perf","node_id":"-52"}],"cacheable":true,"seq_num":3,"comment":"交易,日线,设置初始化函数和K线处理函数,以及初始资金、基准等","comment_collapsed":false,"x":-54.444740295410156,"y":308.632080078125}],"node_layout":"<node_postions><node_position Node='-42' Position='-230.81489825248718,-6,200,200'/><node_position Node='-41' Position='-132,132,200,200'/><node_position Node='-52' Position='-54.444740295410156,308.632080078125,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [7]:
    # 本代码由可视化策略环境自动生成 2023年12月14日 18:06
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
     
    # 显式导入 BigQuant 相关 SDK 模块
    from bigdatasource.api import DataSource
    from bigdata.api.datareader import D
    from biglearning.api import M
    from biglearning.api import tools as T
    from biglearning.module2.common.data import Outputs
     
    import pandas as pd
    import numpy as np
    import math
    import warnings
    import datetime
     
    from zipline.finance.commission import PerOrder
    from zipline.api import get_open_orders
    from zipline.api import symbol
     
    from bigtrader.sdk import *
    from bigtrader.utils.my_collections import NumPyDeque
    from bigtrader.constant import OrderType
    from bigtrader.constant import Direction
    
    # <aistudiograph>
    
    # @param(id="m3", name="initialize")
    # 交易引擎:初始化函数,只执行一次
    def m3_initialize_bigquant_run(context):
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
    
        # 持有期/调仓周期,1天,3天,5天等
        context.holding_days = 1
        # 设置买入股票数量
        context.target_hold_count = 10
        # 每只股票的目标权重
        context.target_percent_per_instrument = 1.0 / context.target_hold_count
    
    # @param(id="m3", name="before_trading_start")
    # 交易引擎:每个单位时间开盘前调用一次。
    def m3_before_trading_start_bigquant_run(context, data):
        # 盘前处理,订阅行情等
        pass
    
    # @param(id="m3", name="handle_tick")
    # 交易引擎:tick数据处理函数,每个tick执行一次
    def m3_handle_tick_bigquant_run(context, tick):
        pass
    
    # @param(id="m3", name="handle_data")
    def m3_handle_data_bigquant_run(context, data):
        
        # 止盈止损
        # stop_pos(context, data)
    
        # 每 context.holding_days 个交易日调仓一次
        if context.trading_day_index % context.holding_days != 0:
            return
    
        
        
        # 获取当前日期
        current_date = data.current_dt.strftime("%Y-%m-%d")
        # 获取当日数据
        current_day_data = context.data[context.data["date"] == current_date]
        # 取前10只
        current_day_data = current_day_data.head(context.target_hold_count)
        # 获取当日目标持有股票
        target_hold_instruments = set(current_day_data["instrument"])
        # 获取当前已持有股票
        current_hold_instruments = set(context.get_account_positions().keys())
    
        # 卖出不在目标持有列表中的股票
        for instrument in current_hold_instruments - target_hold_instruments:
            context.order_target_percent(instrument, 0)
            
        # 买入目标持有列表中的股票
        for instrument in target_hold_instruments - current_hold_instruments:
            context.order_target_percent(instrument, context.target_percent_per_instrument)
    
            
            
        if context.trading_day_index == 5:
             #获取当前时间 pydatetime 类型
            time = data.current_dt 
            #将时间格式转为年月日
            date = data.current_dt.date()
            print('date:', date)
            
            cash  = context.portfolio.cash
            print('cash:', cash)
            
            pos = context.get_account_positions()
            print('positions:', pos)
            
            
            instrument = '000002.SZ'
            stock_market_price = data.current(instrument, 'price') 
            print('最新价格:', stock_market_price)
    
            
            df = data.history(instrument, ["close", "volume"], 30, '1d')
            print('k 线数据:', df)
    
            
            
    
    # @param(id="m3", name="handle_trade")
    # 交易引擎:成交回报处理函数,每个成交发生时执行一次
    def m3_handle_trade_bigquant_run(context, trade):
        pass
    
    # @param(id="m3", name="handle_order")
    # 交易引擎:委托回报处理函数,每个委托变化时执行一次
    def m3_handle_order_bigquant_run(context, order):
        pass
    
    # @param(id="m3", name="after_trading")
    # 交易引擎:盘后处理函数,每日盘后执行一次
    def m3_after_trading_bigquant_run(context, data):
        pass
    
    
    # @module(position="-230.81489825248718,-6", comment='通过SQL调用数据、因子和表达式等构建策略逻辑', comment_collapsed=False)
    m1 = M.input_features_dai.v6(
        sql="""-- 使用DAI SQL获取数据,构建因子等,如下是一个例子作为参考
    -- DAI SQL 语法: https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-sql%E5%85%A5%E9%97%A8%E6%95%99%E7%A8%8B
    
    SELECT
        -- 【在这里输入因子表达式】
        -- DAI SQL 算子/函数: https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-%E5%87%BD%E6%95%B0
        -- 数据&字段: 数据文档 https://bigquant.com/data/home
        -- 使用在时间截面的total_market_cap排名、五日日均成交量m_avg(amount_0, 5)作为本模版的两个因子
        -- 这里使用了DAI提供的normalize函数对因子进行z-score标准化处理以在多因子线性合成时不被量纲影响
        -- 还可以增加系数调节因子权重,这里对第二个因子简单地添加了0.9的系数,在这个示例中没有经济学意义
        -- 另外可以使用DAI提供的cut_outliers函数去极值,c_indneutralize、c_neutralize函数进行行业、行业市值中性化
        0.4*normalize(total_market_cap) + 0.6*normalize(m_avg(amount_0, 5)) AS score,
    
        -- 日期,这是每个股票每天的数据
        date,
        -- 股票代码,代表每一支股票
        instrument
    -- 预计算因子和数据 cn_stock_factors https://bigquant.com/data/datasources/cn_stock_factors
    FROM cn_stock_factors
    
    -- where 数据过滤
    WHERE
       st_status = 0
       
    -- QUALIFY 数据过滤,支持过滤窗口函数,在 WHERE 之后才执行窗口函数。这里简化了一下,都放到QUALIFY了。对于专业用户建议分开WHERE和QUALIFY,有更好的升性能和准确性
    QUALIFY
        -- 剔除ST股票
        st_status = 0
        -- 上市天数 > 270, 过滤掉新股
        AND list_days > 270
        -- 要求 pe > 0,-- 表示注释
        -- AND pe_ttm > 0
        -- 非停牌股
        AND suspended = 0
        -- 不属于北交所
        AND list_sector < 4
        -- 去掉有空值的行
        AND COLUMNS(*) IS NOT NULL
    
    -- 按因子值排名,从小到大
    ORDER BY date, score
    """
    )
    
    # @module(position="-132,132", comment='抽取数据,设置数据开始时间和结束时间,并绑定模拟交易', comment_collapsed=False)
    m2 = M.extract_data_dai.v7(
        sql=m1.data,
        start_date='2023-01-01',
        start_date_bound_to_trading_date=True,
        end_date='2023-10-31',
        end_date_bound_to_trading_date=True,
        before_start_days=90,
        debug=False
    )
    
    # @module(position="-54.444740295410156,308.632080078125", comment='交易,日线,设置初始化函数和K线处理函数,以及初始资金、基准等', comment_collapsed=False)
    m3 = M.bigtrader.v7(
        data=m2.data,
        start_date='',
        end_date='',
        initialize=m3_initialize_bigquant_run,
        before_trading_start=m3_before_trading_start_bigquant_run,
        handle_tick=m3_handle_tick_bigquant_run,
        handle_data=m3_handle_data_bigquant_run,
        handle_trade=m3_handle_trade_bigquant_run,
        handle_order=m3_handle_order_bigquant_run,
        after_trading=m3_after_trading_bigquant_run,
        capital_base=100000,
        frequency='daily',
        product_type='股票',
        before_start_days=0,
        volume_limit=1,
        order_price_field_buy='open',
        order_price_field_sell='open',
        benchmark='000300.SH',
        plot_charts=True,
        disable_cache=True,
        debug=False,
        backtest_only=False
    )
    # </aistudiograph>
    
    • 收益率42.67%
    • 年化收益率54.06%
    • 基准收益率-8.11%
    • 阿尔法0.66
    • 贝塔0.55
    • 夏普比率2.44
    • 胜率0.55
    • 盈亏比1.92
    • 收益波动率17.9%
    • 信息比率0.2
    • 最大回撤8.98%
    日期 时间 证券代码 证券名称 买/卖 数量 成交价 成交金额 平仓盈亏 交易费用
    Loading... (need help?)
    日期 证券代码 证券名称 数量 持仓均价 收盘价 持仓市值 收益
    Loading... (need help?)
    时间 级别 内容
    Loading... (need help?)
    In [4]:
    def stop_pos(context, data):
        date = data.current_dt.strftime('%Y-%m-%d')
        positions = {e: p.cost_basis  for e, p in context.get_account_positions().items()}
        # 新建当日止赢股票列表是为了handle_data 策略逻辑部分不再对该股票进行判断
        current_stopwin_stock = []
        current_stoploss_stock = [] 
        if len(positions) > 0:
            for i in positions.keys():
                stock_cost = positions[i] 
                stock_market_price = data.current(i, 'price') 
                # 赚20%就止赢
                if (stock_market_price - stock_cost ) / stock_cost>= 0.2:   
                    context.order_target_percent(i, 0)     
                    current_stopwin_stock.append(i)
                    print('日期:',date,'股票:',i,'出现止盈状况')
                elif (stock_market_price - stock_cost) / stock_cost <= -0.05:   
                    context.order_target_percent(i, 0)     
                    current_stoploss_stock.append(i)
                    print('日期:',date,'股票:',i,'出现止损状况')
    
    In [ ]: