{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"-41:sql","from_node_id":"-42:data"},{"to_node_id":"-52:data","from_node_id":"-41:data"}],"nodes":[{"node_id":"-42","module_id":"BigQuantSpace.input_features_dai.input_features_dai-v6","parameters":[{"name":"sql","value":"-- 使用DAI SQL获取数据,构建因子等,如下是一个例子作为参考\n-- DAI SQL 语法: https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-sql%E5%85%A5%E9%97%A8%E6%95%99%E7%A8%8B\n\t\nSELECT\n alpha_0 + alpha_1 + alpha_2 + alpha_5 + alpha_24 AS score,\n float_market_cap_0, \n total_market_cap ,\n date,\n instrument\nFROM cn_stock_factors\nJOIN cn_stock_instruments USING (instrument, date)\nWHERE\n -- 只选取在指定日期范围内的数据,这里多看90天,用于有的算子需要更早的数据\n name NOT LIKE '%退%'\n and name NOT LIKE '%ST%'\n and name NOT LIKE '%*%'\n -- date BETWEEN DATE '{start_date}' - INTERVAL 90 DAY AND '{end_date}'\n -- 剔除ST股票\n and st_status = 0\n -- 上市天数 > 365\n -- AND list_days > 365\n -- pe > 0\n AND pe_ttm > 0\n -- 非停牌股\n AND suspended = 0\n -- 不属于北交所\n AND list_sector < 4\n-- 窗口函数内容过滤需要放在 QUALIFY 这里\n\nQUALIFY\n -- 去掉有空值的行\n COLUMNS(*) IS NOT NULL\n -- 换手率排名 <= 0.5\n -- AND c_pct_rank(turn_0) <= 0.5\n\n-- 按市值排名,从小到大\n-- ORDER BY float_market_cap_0,date\n","type":"Literal","bound_global_parameter":null}],"input_ports":[],"output_ports":[{"name":"data","node_id":"-42"}],"cacheable":true,"seq_num":1,"comment":"通过SQL调用数据、因子和表达式等构建策略逻辑","comment_collapsed":false,"x":-197,"y":-42},{"node_id":"-41","module_id":"BigQuantSpace.extract_data_dai.extract_data_dai-v7","parameters":[{"name":"start_date","value":"2024-01-01","type":"Literal","bound_global_parameter":null},{"name":"start_date_bound_to_trading_date","value":"True","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2024-01-11","type":"Literal","bound_global_parameter":null},{"name":"end_date_bound_to_trading_date","value":"True","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"90","type":"Literal","bound_global_parameter":null},{"name":"debug","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"sql","node_id":"-41"}],"output_ports":[{"name":"data","node_id":"-41"}],"cacheable":true,"seq_num":2,"comment":"抽取数据,设置数据开始时间和结束时间,并绑定模拟交易","comment_collapsed":false,"x":-236,"y":107},{"node_id":"-52","module_id":"BigQuantSpace.bigtrader.bigtrader-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 交易引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0001, sell_cost=0.0001, min_cost=0))\n\n # 持有期/调仓周期,1天,3天,5天等\n context.holding_days = 1\n # 设置买入股票数量\n context.target_hold_count = 5\n # 每只股票的目标权重\n context.target_percent_per_instrument = 1.0 / context.target_hold_count\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"# 交易引擎:每个单位时间开盘前调用一次。\ndef bigquant_run(context, data):\n # 盘前处理,订阅行情等\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_tick","value":"# 交易引擎:tick数据处理函数,每个tick执行一次\ndef bigquant_run(context, tick):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"def bigquant_run(context, data):\n # 每5个交易日调仓一次\n if context.trading_day_index % context.holding_days != 0:\n return\n\n # 获取当前日期\n current_date = data.current_dt.strftime(\"%Y-%m-%d\")\n # 获取当日数据\n current_day_data = context.data[context.data[\"date\"] == current_date]\n # 取前10只\n current_day_data = current_day_data.iloc[:context.target_hold_count]\n # 获取当日目标持有股票\n target_hold_instruments = set(current_day_data[\"instrument\"])\n # 获取当前已持有股票\n current_hold_instruments = set(context.get_account_positions().keys())\n\n # 卖出不在目标持有列表中的股票\n for instrument in current_hold_instruments - target_hold_instruments:\n context.order_target_percent(instrument, 0)\n \n # 买入目标持有列表中的股票\n for instrument in target_hold_instruments - current_hold_instruments:\n context.order_target_percent(instrument, context.target_percent_per_instrument)\n","type":"Literal","bound_global_parameter":null},{"name":"handle_trade","value":"# 交易引擎:成交回报处理函数,每个成交发生时执行一次\ndef bigquant_run(context, trade):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"handle_order","value":"# 交易引擎:委托回报处理函数,每个委托变化时执行一次\ndef bigquant_run(context, order):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"after_trading","value":"# 交易引擎:盘后处理函数,每日盘后执行一次\ndef bigquant_run(context, data):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":1000000,"type":"Literal","bound_global_parameter":null},{"name":"frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"0","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":1,"type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"open","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SH","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"disable_cache","value":"True","type":"Literal","bound_global_parameter":null},{"name":"debug","value":"False","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data","node_id":"-52"},{"name":"options_data","node_id":"-52"},{"name":"history_ds","node_id":"-52"},{"name":"benchmark_ds","node_id":"-52"}],"output_ports":[{"name":"raw_perf","node_id":"-52"}],"cacheable":true,"seq_num":3,"comment":"交易,日线,设置初始化函数和K线处理函数,以及初始资金、基准等","comment_collapsed":false,"x":-169,"y":289}],"node_layout":"<node_postions><node_position Node='-42' Position='-197,-42,200,200'/><node_position Node='-41' Position='-236,107,200,200'/><node_position Node='-52' Position='-169,289,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [3]:
    # 本代码由可视化策略环境自动生成 2024年1月15日 11:37
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
     
    # 显式导入 BigQuant 相关 SDK 模块
    from bigdatasource.api import DataSource
    from bigdata.api.datareader import D
    from biglearning.api import M
    from biglearning.api import tools as T
    from biglearning.module2.common.data import Outputs
     
    import pandas as pd
    import numpy as np
    import math
    import warnings
    import datetime
     
    from zipline.finance.commission import PerOrder
    from zipline.api import get_open_orders
    from zipline.api import symbol
     
    from bigtrader.sdk import *
    from bigtrader.utils.my_collections import NumPyDeque
    from bigtrader.constant import OrderType
    from bigtrader.constant import Direction
    
    # <aistudiograph>
    
    # @param(id="m3", name="initialize")
    # 交易引擎:初始化函数,只执行一次
    def m3_initialize_bigquant_run(context):
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0001, sell_cost=0.0001, min_cost=0))
    
        # 持有期/调仓周期,1天,3天,5天等
        context.holding_days = 1
        # 设置买入股票数量
        context.target_hold_count = 5
        # 每只股票的目标权重
        context.target_percent_per_instrument = 1.0 / context.target_hold_count
    
    # @param(id="m3", name="before_trading_start")
    # 交易引擎:每个单位时间开盘前调用一次。
    def m3_before_trading_start_bigquant_run(context, data):
        # 盘前处理,订阅行情等
        pass
    
    # @param(id="m3", name="handle_tick")
    # 交易引擎:tick数据处理函数,每个tick执行一次
    def m3_handle_tick_bigquant_run(context, tick):
        pass
    
    # @param(id="m3", name="handle_data")
    def m3_handle_data_bigquant_run(context, data):
        # 每5个交易日调仓一次
        if context.trading_day_index % context.holding_days != 0:
            return
    
        # 获取当前日期
        current_date = data.current_dt.strftime("%Y-%m-%d")
        # 获取当日数据
        current_day_data = context.data[context.data["date"] == current_date]
        # 取前10只
        current_day_data = current_day_data.iloc[:context.target_hold_count]
        # 获取当日目标持有股票
        target_hold_instruments = set(current_day_data["instrument"])
        # 获取当前已持有股票
        current_hold_instruments = set(context.get_account_positions().keys())
    
        # 卖出不在目标持有列表中的股票
        for instrument in current_hold_instruments - target_hold_instruments:
            context.order_target_percent(instrument, 0)
            
        # 买入目标持有列表中的股票
        for instrument in target_hold_instruments - current_hold_instruments:
            context.order_target_percent(instrument, context.target_percent_per_instrument)
    
    # @param(id="m3", name="handle_trade")
    # 交易引擎:成交回报处理函数,每个成交发生时执行一次
    def m3_handle_trade_bigquant_run(context, trade):
        pass
    
    # @param(id="m3", name="handle_order")
    # 交易引擎:委托回报处理函数,每个委托变化时执行一次
    def m3_handle_order_bigquant_run(context, order):
        pass
    
    # @param(id="m3", name="after_trading")
    # 交易引擎:盘后处理函数,每日盘后执行一次
    def m3_after_trading_bigquant_run(context, data):
        pass
    
    
    # @module(position="-197,-42", comment='通过SQL调用数据、因子和表达式等构建策略逻辑', comment_collapsed=False)
    m1 = M.input_features_dai.v6(
        sql="""-- 使用DAI SQL获取数据,构建因子等,如下是一个例子作为参考
    -- DAI SQL 语法: https://bigquant.com/wiki/doc/dai-PLSbc1SbZX#h-sql%E5%85%A5%E9%97%A8%E6%95%99%E7%A8%8B
    	
    SELECT
        alpha_0 + alpha_1 + alpha_2 + alpha_5 + alpha_24 AS score,
        float_market_cap_0, 
        total_market_cap ,
        date,
        instrument
    FROM cn_stock_factors
    JOIN cn_stock_instruments USING (instrument, date)
    WHERE
        -- 只选取在指定日期范围内的数据,这里多看90天,用于有的算子需要更早的数据
        name NOT LIKE '%退%'
        and name NOT LIKE '%ST%'
        and name NOT LIKE '%*%'
        -- date BETWEEN DATE '{start_date}' - INTERVAL 90 DAY AND '{end_date}'
        -- 剔除ST股票
        and st_status = 0
        -- 上市天数 > 365
        -- AND list_days > 365
        -- pe > 0
        AND pe_ttm > 0
        -- 非停牌股
        AND suspended = 0
        -- 不属于北交所
        AND list_sector < 4
    -- 窗口函数内容过滤需要放在 QUALIFY 这里
    
    QUALIFY
        -- 去掉有空值的行
        COLUMNS(*) IS NOT NULL
        -- 换手率排名 <= 0.5
        -- AND c_pct_rank(turn_0) <= 0.5
    
    -- 按市值排名,从小到大
    -- ORDER BY float_market_cap_0,date
    """
    )
    
    # @module(position="-236,107", comment='抽取数据,设置数据开始时间和结束时间,并绑定模拟交易', comment_collapsed=False)
    m2 = M.extract_data_dai.v7(
        sql=m1.data,
        start_date='2024-01-01',
        start_date_bound_to_trading_date=True,
        end_date='2024-01-11',
        end_date_bound_to_trading_date=True,
        before_start_days=90,
        debug=False
    )
    
    # @module(position="-169,289", comment='交易,日线,设置初始化函数和K线处理函数,以及初始资金、基准等', comment_collapsed=False)
    m3 = M.bigtrader.v7(
        data=m2.data,
        start_date='',
        end_date='',
        initialize=m3_initialize_bigquant_run,
        before_trading_start=m3_before_trading_start_bigquant_run,
        handle_tick=m3_handle_tick_bigquant_run,
        handle_data=m3_handle_data_bigquant_run,
        handle_trade=m3_handle_trade_bigquant_run,
        handle_order=m3_handle_order_bigquant_run,
        after_trading=m3_after_trading_bigquant_run,
        capital_base=1000000,
        frequency='daily',
        product_type='股票',
        before_start_days=0,
        volume_limit=1,
        order_price_field_buy='open',
        order_price_field_sell='open',
        benchmark='000300.SH',
        plot_charts=True,
        disable_cache=True,
        debug=False,
        backtest_only=False
    )
    # </aistudiograph>
    
    BigTrader(高性能回测/交易)
    • 收益率0.54%
    • 年化收益率17.59%
    • 基准收益率-2.68%
    • 阿尔法1.01
    • 贝塔0.63
    • 夏普比率1.15
    • 胜率0.17
    • 盈亏比0.96
    • 收益波动率12.68%
    • 信息比率0.55
    • 最大回撤1.06%
    日期 时间 证券代码 证券名称 买/卖 数量 成交价 成交金额 平仓盈亏 交易费用
    Loading... (need help?)
    日期 证券代码 证券名称 数量 持仓均价 收盘价 持仓市值 收益
    Loading... (need help?)
    时间 级别 内容
    Loading... (need help?)