{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-464:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-823:input_data","from_node_id":"-592:data"},{"to_node_id":"-827:input_data","from_node_id":"-586:data"},{"to_node_id":"-467:input_1","from_node_id":"-238:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-592:input_data","from_node_id":"-464:data_1"},{"to_node_id":"-586:input_data","from_node_id":"-467:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:features_ds","from_node_id":"-972:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"-972:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"-823:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-827:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true,"x":189,"y":-4},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:15日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -15) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 30)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\n# where(shift(high, -1) == shift(low, -1), NaN, label)","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true,"x":77,"y":188},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"#当天是否涨停\nisZhangtToday=where((price_limit_status_0==3),1,0)\n#近6日是否出现过涨停\nmy=where(ts_max(isZhangtToday,30)==1,1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true,"x":601,"y":-7},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"500","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"120","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true,"x":416,"y":817},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true,"x":234,"y":367},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true,"x":577,"y":917},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2023-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-11-22","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false,"x":1011,"y":85},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true,"x":383,"y":188},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true,"x":411,"y":271},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n context.stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 13\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n today = data.current_dt.strftime('%Y-%m-%d')\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n stock_now = len(equities)\n stock_count = context.stock_count\n # 按日期过滤得到今日的预测数据\n # 加载预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n now_stock = []\n sell_stock = []\n \n try:\n buy_list = list(ranker_prediction.instrument)[:stock_count]\n except:\n buy_list = []\n\n #获取每支票的买入金额,总资产/持仓数量\n cash_for_buy=context.portfolio.portfolio_value/stock_count\n\n\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n if len(equities) > 0:\n for i in equities.keys():\n last_sale_date = equities[i].last_sale_date\t# 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n if i not in buy_list and hold_days>=context.options['hold_days']:\n context.order_target(context.symbol(i), 0)\n sell_stock.append(i)\n stock_now = stock_now -1\n\n # 3. 生成买入订单\n buy_num = min(len(buy_list),stock_count)\n if buy_num>0 and len(buy_list)>0: \n cash_for_buy=context.portfolio.portfolio_value/10\n # 不再买入已经轮仓卖出和移动止损的股票,以防止出现空头持仓\n buy_instruments = [i for i in buy_list if i not in now_stock][:buy_num]\n j = 0\n for i, instrument in enumerate(buy_instruments): \n cash_for_buy=min(cash_for_buy,context.portfolio.cash)\n #仓位不足5%,不进行买入动作\n if cash_for_buy<context.portfolio.portfolio_value*0.05 :\n break\n current_price = data.current(context.symbol(instrument), 'price') \n amount = math.floor(cash_for_buy/current_price/100)*100\n context.order(context.symbol(instrument), amount)\n stock_now = stock_now + 1\n j = j + 1","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true,"x":579,"y":1059},{"node_id":"-592","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"my==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-592"}],"output_ports":[{"name":"data","node_id":"-592"},{"name":"left_data","node_id":"-592"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true,"x":230,"y":532},{"node_id":"-586","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"my==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-586"}],"output_ports":[{"name":"data","node_id":"-586"},{"name":"left_data","node_id":"-586"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true,"x":765,"y":532},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true,"x":756,"y":374},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"220","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true,"x":734,"y":279},{"node_id":"-464","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-464"}],"output_ports":[{"name":"data_1","node_id":"-464"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true,"x":238,"y":447},{"node_id":"-467","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-467"}],"output_ports":[{"name":"data_1","node_id":"-467"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true,"x":744,"y":444},{"node_id":"-972","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"rank_return_0\nrank_return_1\ngroup_rank(industry_sw_level2_0,return_1)\nwhere(close_0>open_0,1,0)\nrank((ts_max(close_0,30)-close_0)/(close_0-ts_min(close_0,30)+0.0001))\n(close_0-mean(close_0,5))/close_0\nvolume_0/ts_max(volume_0,60)\nrank_avg_turn_3\nta_bbands_lowerband_14_0\nta_macd_macd_12_26_9_0\nta_stoch_slowd_5_3_0_3_0_0\nisZhangtToday=where(price_limit_status_0==3,1,0)\nts_argmax(isZhangtToday,30)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-972"}],"output_ports":[{"name":"data","node_id":"-972"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true,"x":560,"y":-157},{"node_id":"-823","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-823"},{"name":"features","node_id":"-823"}],"output_ports":[{"name":"data","node_id":"-823"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true,"x":230,"y":634},{"node_id":"-827","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-827"},{"name":"features","node_id":"-827"}],"output_ports":[{"name":"data","node_id":"-827"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true,"x":747,"y":641}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='189,-4,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='77,188,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='601,-7,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='416,817,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='234,367,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='577,917,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1011,85,200,200'/><node_position Node='-215' Position='383,188,200,200'/><node_position Node='-222' Position='411,271,200,200'/><node_position Node='-250' Position='579,1059,200,200'/><node_position Node='-592' Position='230,532,200,200'/><node_position Node='-586' Position='765,532,200,200'/><node_position Node='-238' Position='756,374,200,200'/><node_position Node='-231' Position='734,279,200,200'/><node_position Node='-464' Position='238,447,200,200'/><node_position Node='-467' Position='744,444,200,200'/><node_position Node='-972' Position='560,-157,200,200'/><node_position Node='-823' Position='230,634,200,200'/><node_position Node='-827' Position='747,641,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
[2023-11-23 16:22:13.085730] INFO: moduleinvoker:466135655.py:106: instruments.v2 开始运行..
[2023-11-23 16:22:13.101449] INFO: moduleinvoker:466135655.py:106: 命中缓存
[2023-11-23 16:22:13.106173] INFO: moduleinvoker:466135655.py:106: instruments.v2 运行完成[0.020461s].
[2023-11-23 16:22:13.123994] INFO: moduleinvoker:466135655.py:115: advanced_auto_labeler.v2 开始运行..
[2023-11-23 16:22:13.135726] INFO: moduleinvoker:466135655.py:115: 命中缓存
[2023-11-23 16:22:13.141978] INFO: moduleinvoker:466135655.py:115: advanced_auto_labeler.v2 运行完成[0.017988s].
[2023-11-23 16:22:13.155603] INFO: moduleinvoker:466135655.py:141: instruments.v2 开始运行..
[2023-11-23 16:22:13.167253] INFO: moduleinvoker:466135655.py:141: 命中缓存
[2023-11-23 16:22:13.171524] INFO: moduleinvoker:466135655.py:141: instruments.v2 运行完成[0.015912s].
[2023-11-23 16:22:13.188649] INFO: moduleinvoker:466135655.py:150: input_features.v1 开始运行..
[2023-11-23 16:22:13.198009] INFO: moduleinvoker:466135655.py:150: 命中缓存
[2023-11-23 16:22:13.202410] INFO: moduleinvoker:466135655.py:150: input_features.v1 运行完成[0.013783s].
[2023-11-23 16:22:13.214102] INFO: moduleinvoker:466135655.py:168: input_features.v1 开始运行..
[2023-11-23 16:22:13.241177] INFO: moduleinvoker:466135655.py:168: 命中缓存
[2023-11-23 16:22:13.246679] INFO: moduleinvoker:466135655.py:168: input_features.v1 运行完成[0.03255s].
[2023-11-23 16:22:13.293798] INFO: moduleinvoker:466135655.py:177: general_feature_extractor.v7 开始运行..
[2023-11-23 16:22:13.304040] INFO: moduleinvoker:466135655.py:177: 命中缓存
[2023-11-23 16:22:13.308859] INFO: moduleinvoker:466135655.py:177: general_feature_extractor.v7 运行完成[0.014989s].
[2023-11-23 16:22:13.330848] INFO: moduleinvoker:466135655.py:186: derived_feature_extractor.v3 开始运行..
[2023-11-23 16:22:13.349610] INFO: moduleinvoker:466135655.py:186: 命中缓存
[2023-11-23 16:22:13.353534] INFO: moduleinvoker:466135655.py:186: derived_feature_extractor.v3 运行完成[0.0227s].
[2023-11-23 16:22:13.377041] INFO: moduleinvoker:466135655.py:196: join.v3 开始运行..
[2023-11-23 16:22:13.386681] INFO: moduleinvoker:466135655.py:196: 命中缓存
[2023-11-23 16:22:13.391206] INFO: moduleinvoker:466135655.py:196: join.v3 运行完成[0.014187s].
[2023-11-23 16:22:13.440626] INFO: moduleinvoker:466135655.py:205: filtet_st_stock.v7 开始运行..
[2023-11-23 16:22:13.449938] INFO: moduleinvoker:466135655.py:205: 命中缓存
[2023-11-23 16:22:13.455094] INFO: moduleinvoker:466135655.py:205: filtet_st_stock.v7 运行完成[0.01444s].
[2023-11-23 16:22:13.477401] INFO: moduleinvoker:466135655.py:210: filter.v3 开始运行..
[2023-11-23 16:22:13.487158] INFO: moduleinvoker:466135655.py:210: 命中缓存
[2023-11-23 16:22:13.491842] INFO: moduleinvoker:466135655.py:210: filter.v3 运行完成[0.014446s].
[2023-11-23 16:22:13.513841] INFO: moduleinvoker:466135655.py:217: dropnan.v2 开始运行..
[2023-11-23 16:22:13.523380] INFO: moduleinvoker:466135655.py:217: 命中缓存
[2023-11-23 16:22:13.528191] INFO: moduleinvoker:466135655.py:217: dropnan.v2 运行完成[0.014357s].
[2023-11-23 16:22:13.549110] INFO: moduleinvoker:466135655.py:222: general_feature_extractor.v7 开始运行..
[2023-11-23 16:22:13.564981] INFO: moduleinvoker:466135655.py:222: 命中缓存
[2023-11-23 16:22:13.569961] INFO: moduleinvoker:466135655.py:222: general_feature_extractor.v7 运行完成[0.020865s].
[2023-11-23 16:22:13.588189] INFO: moduleinvoker:466135655.py:231: derived_feature_extractor.v3 开始运行..
[2023-11-23 16:22:13.603794] INFO: moduleinvoker:466135655.py:231: 命中缓存
[2023-11-23 16:22:13.609052] INFO: moduleinvoker:466135655.py:231: derived_feature_extractor.v3 运行完成[0.020867s].
[2023-11-23 16:22:13.630207] INFO: moduleinvoker:466135655.py:241: filtet_st_stock.v7 开始运行..
[2023-11-23 16:22:13.641282] INFO: moduleinvoker:466135655.py:241: 命中缓存
[2023-11-23 16:22:13.647412] INFO: moduleinvoker:466135655.py:241: filtet_st_stock.v7 运行完成[0.017618s].
[2023-11-23 16:22:13.666662] INFO: moduleinvoker:466135655.py:246: filter.v3 开始运行..
[2023-11-23 16:22:13.682117] INFO: moduleinvoker:466135655.py:246: 命中缓存
[2023-11-23 16:22:13.686934] INFO: moduleinvoker:466135655.py:246: filter.v3 运行完成[0.020303s].
[2023-11-23 16:22:13.702255] INFO: moduleinvoker:466135655.py:253: dropnan.v2 开始运行..
[2023-11-23 16:22:13.715935] INFO: moduleinvoker:466135655.py:253: 命中缓存
[2023-11-23 16:22:13.721180] INFO: moduleinvoker:466135655.py:253: dropnan.v2 运行完成[0.018926s].
[2023-11-23 16:22:13.749746] INFO: moduleinvoker:466135655.py:258: stock_ranker_train.v5 开始运行..
[2023-11-23 16:22:13.762540] INFO: moduleinvoker:466135655.py:258: 命中缓存
[2023-11-23 16:22:13.876320] WARNING AI: plot is deprecated, please use bigcharts.render instead. read bigcharts docs: https://bigquant.com/wiki/doc/shuju-tKl1IIzTlb
[2023-11-23 16:22:13.934805] ERROR StockRanker训练: plot_stock_ranker_tabs failed: cannot import name d3js
[2023-11-23 16:22:13.939773] INFO: moduleinvoker:466135655.py:258: stock_ranker_train.v5 运行完成[0.190033s].
[2023-11-23 16:22:13.973053] INFO: moduleinvoker:466135655.py:272: stock_ranker_predict.v5 开始运行..
[2023-11-23 16:22:13.986752] INFO: moduleinvoker:466135655.py:272: 命中缓存
[2023-11-23 16:22:13.993977] INFO: moduleinvoker:466135655.py:272: stock_ranker_predict.v5 运行完成[0.020954s].
[2023-11-23 16:22:18.919157] INFO: moduleinvoker:466135655.py:279: backtest.v8 开始运行..
[2023-11-23 16:22:18.935964] INFO: moduleinvoker:466135655.py:279: 命中缓存
/usr/local/python3/lib/python3.8/site-packages/pandas/core/indexing.py:1637: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)
[2023-11-23 16:22:19.746695] INFO: bigcharts.impl.render:render.py:408:render_chart Data is None, skip loading it to chart.
[2023-11-23 16:22:20.711138] INFO: moduleinvoker:466135655.py:279: backtest.v8 运行完成[1.792001s].
[2023-11-23 16:22:20.720130] INFO: moduleinvoker:466135655.py:279: trade.v4 运行完成[6.700234s].
收益率 65.96%
年化收益率 81.07%
基准收益率 -8.45%
阿尔法 0.98
贝塔 0.78
夏普比率 2.73
胜率 0.55
盈亏比 1.99
收益波动率 21.51%
信息比率 0.24
最大回撤 9.15%
日期
时间
股票代码
股票名称
买/卖
数量
成交价
总成本
交易佣金
Loading... (need help ?)
日期
股票代码
股票名称
持仓均价
收盘价
股数
持仓价值
收益
Loading... (need help ?)
时间
级别
内容
Loading... (need help ?)