{"description":"实验创建于2017/8/26","graph":{"edges":[{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"-215:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15:data"},{"to_node_id":"-215:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-222:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-238:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"-231:features","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:model","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:model"},{"to_node_id":"-464:input_1","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data"},{"to_node_id":"-250:options_data","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:predictions"},{"to_node_id":"-250:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-231:instruments","from_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62:data"},{"to_node_id":"-222:input_data","from_node_id":"-215:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53:data2","from_node_id":"-222:data"},{"to_node_id":"-823:input_data","from_node_id":"-592:data"},{"to_node_id":"-827:input_data","from_node_id":"-586:data"},{"to_node_id":"-467:input_1","from_node_id":"-238:data"},{"to_node_id":"-238:input_data","from_node_id":"-231:data"},{"to_node_id":"-592:input_data","from_node_id":"-464:data_1"},{"to_node_id":"-586:input_data","from_node_id":"-467:data_1"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24:features_ds","from_node_id":"-972:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:features","from_node_id":"-972:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43:training_ds","from_node_id":"-823:data"},{"to_node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60:data","from_node_id":"-827:data"}],"nodes":[{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2020-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-12-31","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-8"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true,"x":189,"y":-4},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:15日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -15) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 30)\n\n# 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\n# where(shift(high, -1) == shift(low, -1), NaN, label)","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-15"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true,"x":77,"y":188},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"#当天是否涨停\nisZhangtToday=where((price_limit_status_0==3),1,0)\n#近6日是否出现过涨停\nmy=where(ts_max(isZhangtToday,30)==1,1,0)","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-24"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true,"x":601,"y":-7},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v5","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":"40","type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":"500","type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"120","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":0.1,"type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"features","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"test_ds","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"base_model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"output_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"feature_gains","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-43"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true,"x":416,"y":817},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"},{"name":"data2","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-53"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true,"x":234,"y":367},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"output_ports":[{"name":"predictions","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"},{"name":"m_lazy_run","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-60"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true,"x":577,"y":917},{"node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2023-01-01","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-11-22","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":"0","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"output_ports":[{"name":"data","node_id":"287d2cb0-f53c-4101-bdf8-104b137c8601-62"}],"cacheable":true,"seq_num":9,"comment":"预测数据,用于回测和模拟","comment_collapsed":false,"x":1011,"y":85},{"node_id":"-215","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-215"},{"name":"features","node_id":"-215"}],"output_ports":[{"name":"data","node_id":"-215"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true,"x":383,"y":188},{"node_id":"-222","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-222"},{"name":"features","node_id":"-222"}],"output_ports":[{"name":"data","node_id":"-222"}],"cacheable":true,"seq_num":16,"comment":"","comment_collapsed":true,"x":411,"y":271},{"node_id":"-250","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n context.stock_count = 5\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 13\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n today = data.current_dt.strftime('%Y-%m-%d')\n equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}\n stock_now = len(equities)\n stock_count = context.stock_count\n # 按日期过滤得到今日的预测数据\n # 加载预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]\n\n now_stock = []\n sell_stock = []\n \n try:\n buy_list = list(ranker_prediction.instrument)[:stock_count]\n except:\n buy_list = []\n\n #获取每支票的买入金额,总资产/持仓数量\n cash_for_buy=context.portfolio.portfolio_value/stock_count\n\n\n positions = {e.symbol: p.amount * p.last_sale_price\n for e, p in context.perf_tracker.position_tracker.positions.items()}\n\n if len(equities) > 0:\n for i in equities.keys():\n last_sale_date = equities[i].last_sale_date\t# 上次交易日期\n delta_days = data.current_dt - last_sale_date \n hold_days = delta_days.days # 持仓天数\n if i not in buy_list and hold_days>=context.options['hold_days']:\n context.order_target(context.symbol(i), 0)\n sell_stock.append(i)\n stock_now = stock_now -1\n\n # 3. 生成买入订单\n buy_num = min(len(buy_list),stock_count)\n if buy_num>0 and len(buy_list)>0: \n cash_for_buy=context.portfolio.portfolio_value/10\n # 不再买入已经轮仓卖出和移动止损的股票,以防止出现空头持仓\n buy_instruments = [i for i in buy_list if i not in now_stock][:buy_num]\n j = 0\n for i, instrument in enumerate(buy_instruments): \n cash_for_buy=min(cash_for_buy,context.portfolio.cash)\n #仓位不足5%,不进行买入动作\n if cash_for_buy<context.portfolio.portfolio_value*0.05 :\n break\n current_price = data.current(context.symbol(instrument), 'price') \n amount = math.floor(cash_for_buy/current_price/100)*100\n context.order(context.symbol(instrument), amount)\n stock_now = stock_now + 1\n j = j + 1","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"# 回测引擎:准备数据,只执行一次\ndef bigquant_run(context):\n pass\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"1000000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-250"},{"name":"options_data","node_id":"-250"},{"name":"history_ds","node_id":"-250"},{"name":"benchmark_ds","node_id":"-250"},{"name":"trading_calendar","node_id":"-250"}],"output_ports":[{"name":"raw_perf","node_id":"-250"}],"cacheable":false,"seq_num":19,"comment":"","comment_collapsed":true,"x":579,"y":1059},{"node_id":"-592","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"my==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-592"}],"output_ports":[{"name":"data","node_id":"-592"},{"name":"left_data","node_id":"-592"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true,"x":230,"y":532},{"node_id":"-586","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"my==1","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-586"}],"output_ports":[{"name":"data","node_id":"-586"},{"name":"left_data","node_id":"-586"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true,"x":765,"y":532},{"node_id":"-238","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-238"},{"name":"features","node_id":"-238"}],"output_ports":[{"name":"data","node_id":"-238"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true,"x":756,"y":374},{"node_id":"-231","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":"220","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-231"},{"name":"features","node_id":"-231"}],"output_ports":[{"name":"data","node_id":"-231"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true,"x":734,"y":279},{"node_id":"-464","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-464"}],"output_ports":[{"name":"data_1","node_id":"-464"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true,"x":238,"y":447},{"node_id":"-467","module_id":"BigQuantSpace.filtet_st_stock.filtet_st_stock-v7","parameters":[],"input_ports":[{"name":"input_1","node_id":"-467"}],"output_ports":[{"name":"data_1","node_id":"-467"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true,"x":744,"y":444},{"node_id":"-972","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"rank_return_0\nrank_return_1\ngroup_rank(industry_sw_level2_0,return_1)\nwhere(close_0>open_0,1,0)\nrank((ts_max(close_0,30)-close_0)/(close_0-ts_min(close_0,30)+0.0001))\n(close_0-mean(close_0,5))/close_0\nvolume_0/ts_max(volume_0,60)\nrank_avg_turn_3\nta_bbands_lowerband_14_0\nta_macd_macd_12_26_9_0\nta_stoch_slowd_5_3_0_3_0_0\nisZhangtToday=where(price_limit_status_0==3,1,0)\nts_argmax(isZhangtToday,30)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-972"}],"output_ports":[{"name":"data","node_id":"-972"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true,"x":560,"y":-157},{"node_id":"-823","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-823"},{"name":"features","node_id":"-823"}],"output_ports":[{"name":"data","node_id":"-823"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true,"x":230,"y":634},{"node_id":"-827","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-827"},{"name":"features","node_id":"-827"}],"output_ports":[{"name":"data","node_id":"-827"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true,"x":747,"y":641}],"node_layout":"<node_postions><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-8' Position='189,-4,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-15' Position='77,188,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-24' Position='601,-7,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-43' Position='416,817,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-53' Position='234,367,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-60' Position='577,917,200,200'/><node_position Node='287d2cb0-f53c-4101-bdf8-104b137c8601-62' Position='1011,85,200,200'/><node_position Node='-215' Position='383,188,200,200'/><node_position Node='-222' Position='411,271,200,200'/><node_position Node='-250' Position='579,1059,200,200'/><node_position Node='-592' Position='230,532,200,200'/><node_position Node='-586' Position='765,532,200,200'/><node_position Node='-238' Position='756,374,200,200'/><node_position Node='-231' Position='734,279,200,200'/><node_position Node='-464' Position='238,447,200,200'/><node_position Node='-467' Position='744,444,200,200'/><node_position Node='-972' Position='560,-157,200,200'/><node_position Node='-823' Position='230,634,200,200'/><node_position Node='-827' Position='747,641,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [1]:
    # 本代码由可视化策略环境自动生成 2023年11月23日 16:20
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
     
    # 显式导入 BigQuant 相关 SDK 模块
    from bigdatasource.api import DataSource
    from bigdata.api.datareader import D
    from biglearning.api import M
    from biglearning.api import tools as T
    from biglearning.module2.common.data import Outputs
     
    import pandas as pd
    import numpy as np
    import math
    import warnings
    import datetime
     
    from zipline.finance.commission import PerOrder
    from zipline.api import get_open_orders
    from zipline.api import symbol
     
    from bigtrader.sdk import *
    from bigtrader.utils.my_collections import NumPyDeque
    from bigtrader.constant import OrderType
    from bigtrader.constant import Direction
    
    # <aistudiograph>
    
    # @param(id="m19", name="initialize")
    # 回测引擎:初始化函数,只执行一次
    def m19_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        context.stock_count = 5
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = [1]
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1
        context.options['hold_days'] = 13
    
    # @param(id="m19", name="handle_data")
    # 回测引擎:每日数据处理函数,每天执行一次
    def m19_handle_data_bigquant_run(context, data):
        today = data.current_dt.strftime('%Y-%m-%d')
        equities = {e.symbol: p for e, p in context.portfolio.positions.items() if p.amount>0}
        stock_now = len(equities)
        stock_count = context.stock_count
        # 按日期过滤得到今日的预测数据
        # 加载预测数据
        ranker_prediction = context.ranker_prediction[
        context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]
    
        now_stock = []
        sell_stock = []
           
        try:
            buy_list = list(ranker_prediction.instrument)[:stock_count]
        except:
            buy_list = []
    
        #获取每支票的买入金额,总资产/持仓数量
        cash_for_buy=context.portfolio.portfolio_value/stock_count
    
    
        positions = {e.symbol: p.amount * p.last_sale_price
                     for e, p in context.perf_tracker.position_tracker.positions.items()}
    
        if len(equities) > 0:
                for i in equities.keys():
                    last_sale_date = equities[i].last_sale_date	# 上次交易日期
                    delta_days = data.current_dt - last_sale_date  
                    hold_days = delta_days.days # 持仓天数
                    if i not in buy_list and hold_days>=context.options['hold_days']:
                        context.order_target(context.symbol(i), 0)
                        sell_stock.append(i)
                        stock_now = stock_now -1
    
         # 3. 生成买入订单
        buy_num = min(len(buy_list),stock_count)
        if buy_num>0 and len(buy_list)>0:      
            cash_for_buy=context.portfolio.portfolio_value/10
            # 不再买入已经轮仓卖出和移动止损的股票,以防止出现空头持仓
            buy_instruments = [i for i in buy_list if i not in now_stock][:buy_num]
            j = 0
            for i, instrument in enumerate(buy_instruments):  
                cash_for_buy=min(cash_for_buy,context.portfolio.cash)
                #仓位不足5%,不进行买入动作
                if cash_for_buy<context.portfolio.portfolio_value*0.05 :
                    break
                current_price = data.current(context.symbol(instrument), 'price')            
                amount = math.floor(cash_for_buy/current_price/100)*100
                context.order(context.symbol(instrument), amount)
                stock_now = stock_now + 1
                j = j + 1
    # @param(id="m19", name="prepare")
    # 回测引擎:准备数据,只执行一次
    def m19_prepare_bigquant_run(context):
        pass
    
    
    # @module(position="189,-4", comment='', comment_collapsed=True)
    m1 = M.instruments.v2(
        start_date='2020-01-01',
        end_date='2022-12-31',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    # @module(position="77,188", comment='', comment_collapsed=True)
    m2 = M.advanced_auto_labeler.v2(
        instruments=m1.data,
        label_expr="""# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:15日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -15) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 30)
    
    # 过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    # where(shift(high, -1) == shift(low, -1), NaN, label)""",
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=False
    )
    
    # @module(position="1011,85", comment='预测数据,用于回测和模拟', comment_collapsed=False)
    m9 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2023-01-01'),
        end_date=T.live_run_param('trading_date', '2023-11-22'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    # @module(position="560,-157", comment='', comment_collapsed=True)
    m12 = M.input_features.v1(
        features="""rank_return_0
    rank_return_1
    group_rank(industry_sw_level2_0,return_1)
    where(close_0>open_0,1,0)
    rank((ts_max(close_0,30)-close_0)/(close_0-ts_min(close_0,30)+0.0001))
    (close_0-mean(close_0,5))/close_0
    volume_0/ts_max(volume_0,60)
    rank_avg_turn_3
    ta_bbands_lowerband_14_0
    ta_macd_macd_12_26_9_0
    ta_stoch_slowd_5_3_0_3_0_0
    isZhangtToday=where(price_limit_status_0==3,1,0)
    ts_argmax(isZhangtToday,30)
    """
    )
    
    # @module(position="601,-7", comment='', comment_collapsed=True)
    m3 = M.input_features.v1(
        features_ds=m12.data,
        features="""#当天是否涨停
    isZhangtToday=where((price_limit_status_0==3),1,0)
    #近6日是否出现过涨停
    my=where(ts_max(isZhangtToday,30)==1,1,0)"""
    )
    
    # @module(position="383,188", comment='', comment_collapsed=True)
    m15 = M.general_feature_extractor.v7(
        instruments=m1.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    # @module(position="411,271", comment='', comment_collapsed=True)
    m16 = M.derived_feature_extractor.v3(
        input_data=m15.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    # @module(position="234,367", comment='', comment_collapsed=True)
    m7 = M.join.v3(
        data1=m2.data,
        data2=m16.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    # @module(position="238,447", comment='', comment_collapsed=True)
    m10 = M.filtet_st_stock.v7(
        input_1=m7.data
    )
    
    # @module(position="230,532", comment='', comment_collapsed=True)
    m5 = M.filter.v3(
        input_data=m10.data_1,
        expr='my==1',
        output_left_data=False
    )
    
    # @module(position="230,634", comment='', comment_collapsed=True)
    m13 = M.dropnan.v2(
        input_data=m5.data
    )
    
    # @module(position="734,279", comment='', comment_collapsed=True)
    m17 = M.general_feature_extractor.v7(
        instruments=m9.data,
        features=m3.data,
        start_date='',
        end_date='',
        before_start_days=220
    )
    
    # @module(position="756,374", comment='', comment_collapsed=True)
    m18 = M.derived_feature_extractor.v3(
        input_data=m17.data,
        features=m3.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False
    )
    
    # @module(position="744,444", comment='', comment_collapsed=True)
    m11 = M.filtet_st_stock.v7(
        input_1=m18.data
    )
    
    # @module(position="765,532", comment='', comment_collapsed=True)
    m4 = M.filter.v3(
        input_data=m11.data_1,
        expr='my==1',
        output_left_data=False
    )
    
    # @module(position="747,641", comment='', comment_collapsed=True)
    m14 = M.dropnan.v2(
        input_data=m4.data
    )
    
    # @module(position="416,817", comment='', comment_collapsed=True)
    m6 = M.stock_ranker_train.v5(
        training_ds=m13.data,
        features=m12.data,
        learning_algorithm='排序',
        number_of_leaves=40,
        minimum_docs_per_leaf=500,
        number_of_trees=120,
        learning_rate=0.1,
        max_bins=1023,
        feature_fraction=1,
        m_lazy_run=False
    )
    
    # @module(position="577,917", comment='', comment_collapsed=True)
    m8 = M.stock_ranker_predict.v5(
        model=m6.model,
        data=m14.data,
        m_lazy_run=False
    )
    
    # @module(position="579,1059", comment='', comment_collapsed=True)
    m19 = M.trade.v4(
        instruments=m9.data,
        options_data=m8.predictions,
        start_date='',
        end_date='',
        initialize=m19_initialize_bigquant_run,
        handle_data=m19_handle_data_bigquant_run,
        prepare=m19_prepare_bigquant_run,
        volume_limit=0,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=1000000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    # </aistudiograph>
    
    • 收益率65.96%
    • 年化收益率81.07%
    • 基准收益率-8.45%
    • 阿尔法0.98
    • 贝塔0.78
    • 夏普比率2.73
    • 胜率0.55
    • 盈亏比1.99
    • 收益波动率21.51%
    • 信息比率0.24
    • 最大回撤9.15%
    日期 时间 股票代码 股票名称 买/卖 数量 成交价 总成本 交易佣金
    Loading... (need help?)
    日期 股票代码 股票名称 持仓均价 收盘价 股数 持仓价值 收益
    Loading... (need help?)
    时间 级别 内容
    Loading... (need help?)