{"description":"实验创建于2023/2/10","graph":{"edges":[{"to_node_id":"-19:features","from_node_id":"-6:data"},{"to_node_id":"-26:features","from_node_id":"-6:data"},{"to_node_id":"-117:features","from_node_id":"-6:data"},{"to_node_id":"-124:features","from_node_id":"-6:data"},{"to_node_id":"-88:features","from_node_id":"-6:data"},{"to_node_id":"-19:instruments","from_node_id":"-10:data"},{"to_node_id":"-34:instruments","from_node_id":"-10:data"},{"to_node_id":"-26:input_data","from_node_id":"-19:data"},{"to_node_id":"-49:data2","from_node_id":"-26:data"},{"to_node_id":"-56:input_data","from_node_id":"-34:data"},{"to_node_id":"-173:data2","from_node_id":"-49:data"},{"to_node_id":"-49:data1","from_node_id":"-56:data"},{"to_node_id":"-104:model","from_node_id":"-88:model"},{"to_node_id":"-234:options_data","from_node_id":"-104:predictions"},{"to_node_id":"-117:instruments","from_node_id":"-108:data"},{"to_node_id":"-234:instruments","from_node_id":"-108:data"},{"to_node_id":"-124:input_data","from_node_id":"-117:data"},{"to_node_id":"-135:input_data","from_node_id":"-124:data"},{"to_node_id":"-139:input_data","from_node_id":"-135:data"},{"to_node_id":"-189:input_data","from_node_id":"-138:data"},{"to_node_id":"-104:data","from_node_id":"-139:data"},{"to_node_id":"-88:training_ds","from_node_id":"-189:data"},{"to_node_id":"-160:input_data","from_node_id":"-152:data"},{"to_node_id":"-173:data1","from_node_id":"-160:data"},{"to_node_id":"-152:features","from_node_id":"-168:data"},{"to_node_id":"-138:input_data","from_node_id":"-173:data"},{"to_node_id":"-152:instruments","from_node_id":"-183:data"},{"to_node_id":"-160:features","from_node_id":"-191:data"}],"nodes":[{"node_id":"-6","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\nrank_return_90<2\nrank_return_5<2\nrank_return_20<2\nrank_return_10<2\nprice_limit_status_0\nprice_limit_status_1\nprice_limit_status_2\nprice_limit_status_3\nprice_limit_status_4\nprice_limit_status_5\nprice_limit_status_6\nprice_limit_status_7\nprice_limit_status_8\nprice_limit_status_9\nprice_limit_status_10\nclose_0<30\nclose_0<10\nmarket_cap_float_0<28000000000\nmarket_cap_float_0<10000000000\n#avg_turn_5\n#avg_turn_10\n#turn_0\namount_0\navg_amount_5\n#mf_net_pct_xl_0\n#amount_0/avg_amount_5>4\n#判断放量\n#cj=turn_0/turn_1>3&amount_0>3000000000\n#turn_0/turn_1>3 and amount_0>3000000000\n# 计算过去n个交易日的复权收盘价与换手率的Pearson相关系数\n#level_0\nturn_0\nclose_0\ncorrelation(close_0, turn_0, 10)\n#10日涨停次数\ns2=sum(price_limit_status_0==3, 15)\n#5日涨停次数\ns3=sum(price_limit_status_0==3, 5)\n#涨停排名\ns=rank(sum(where(price_limit_status_0 == 3, 1, 0), 5))\n#连板次数排名\ns1=rank(sum(where(price_limit_status_0 == 3, 1, 0), 15))\n#成交额小于10亿\namount_0<1000000000\nindustry_sw_level1_0\nmyrank=rank_fs_roe_ttm_0+rank_fs_net_profit_qoq_0-rank_pb_lf_0\n#超大单净额\nmf_net_amount_xl_0\n#15日平均换手率除以当日换手率,用于衡量股票的流动性和热度。\navg_turn_10/turn_0 \n\n#表示相对收益率\n#relative_ret=stockret-bmret \n#表示5日相对收益率,是指过去5个交易日的相对收益率之和,用于衡量股票的短期表现。\n#relative_ret_5=sum(relative_ret,5)\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-6"}],"output_ports":[{"name":"data","node_id":"-6"}],"cacheable":true,"seq_num":1,"comment":"","comment_collapsed":true,"x":594,"y":-80},{"node_id":"-10","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2019-01-01","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2022-01-01","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-10"}],"output_ports":[{"name":"data","node_id":"-10"}],"cacheable":true,"seq_num":2,"comment":"","comment_collapsed":true,"x":138,"y":12},{"node_id":"-19","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-19"},{"name":"features","node_id":"-19"}],"output_ports":[{"name":"data","node_id":"-19"}],"cacheable":true,"seq_num":3,"comment":"","comment_collapsed":true,"x":559,"y":167},{"node_id":"-26","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-26"},{"name":"features","node_id":"-26"}],"output_ports":[{"name":"data","node_id":"-26"}],"cacheable":true,"seq_num":4,"comment":"","comment_collapsed":true,"x":559,"y":267},{"node_id":"-34","module_id":"BigQuantSpace.advanced_auto_labeler.advanced_auto_labeler-v2","parameters":[{"name":"label_expr","value":"# #号开始的表示注释\n# 0. 每行一个,顺序执行,从第二个开始,可以使用label字段\n# 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html\n# 添加benchmark_前缀,可使用对应的benchmark数据\n# 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_\n\n# 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)\nshift(close, -2) / shift(open, -1)\n\n# 极值处理:用1%和99%分位的值做clip\nclip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))\n\n# 将分数映射到分类,这里使用20个分类\nall_wbins(label, 20)\n\n#过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)\nwhere(shift(high, -1) == shift(low, -1), NaN, label)\n\n","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null},{"name":"drop_na_label","value":"True","type":"Literal","bound_global_parameter":null},{"name":"cast_label_int","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-34"}],"output_ports":[{"name":"data","node_id":"-34"}],"cacheable":true,"seq_num":5,"comment":"","comment_collapsed":true,"x":155,"y":176},{"node_id":"-49","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-49"},{"name":"data2","node_id":"-49"}],"output_ports":[{"name":"data","node_id":"-49"}],"cacheable":true,"seq_num":6,"comment":"","comment_collapsed":true,"x":291,"y":361},{"node_id":"-56","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-56"}],"output_ports":[{"name":"data","node_id":"-56"},{"name":"left_data","node_id":"-56"}],"cacheable":true,"seq_num":7,"comment":"","comment_collapsed":true,"x":170,"y":288},{"node_id":"-88","module_id":"BigQuantSpace.stock_ranker_train.stock_ranker_train-v6","parameters":[{"name":"learning_algorithm","value":"排序","type":"Literal","bound_global_parameter":null},{"name":"number_of_leaves","value":30,"type":"Literal","bound_global_parameter":null},{"name":"minimum_docs_per_leaf","value":1000,"type":"Literal","bound_global_parameter":null},{"name":"number_of_trees","value":"20","type":"Literal","bound_global_parameter":null},{"name":"learning_rate","value":"0.4","type":"Literal","bound_global_parameter":null},{"name":"max_bins","value":1023,"type":"Literal","bound_global_parameter":null},{"name":"feature_fraction","value":"1","type":"Literal","bound_global_parameter":null},{"name":"data_row_fraction","value":1,"type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"ndcg_discount_base","value":1,"type":"Literal","bound_global_parameter":null},{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"training_ds","node_id":"-88"},{"name":"features","node_id":"-88"},{"name":"test_ds","node_id":"-88"},{"name":"base_model","node_id":"-88"}],"output_ports":[{"name":"model","node_id":"-88"},{"name":"feature_gains","node_id":"-88"},{"name":"m_lazy_run","node_id":"-88"}],"cacheable":true,"seq_num":9,"comment":"","comment_collapsed":true,"x":376,"y":788},{"node_id":"-104","module_id":"BigQuantSpace.stock_ranker_predict.stock_ranker_predict-v5","parameters":[{"name":"m_lazy_run","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"model","node_id":"-104"},{"name":"data","node_id":"-104"}],"output_ports":[{"name":"predictions","node_id":"-104"},{"name":"m_lazy_run","node_id":"-104"}],"cacheable":true,"seq_num":10,"comment":"","comment_collapsed":true,"x":685,"y":907},{"node_id":"-108","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-02","type":"Literal","bound_global_parameter":"交易日期"},{"name":"end_date","value":"2023-12-30","type":"Literal","bound_global_parameter":"交易日期"},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-108"}],"output_ports":[{"name":"data","node_id":"-108"}],"cacheable":true,"seq_num":11,"comment":"","comment_collapsed":true,"x":1013,"y":23},{"node_id":"-117","module_id":"BigQuantSpace.general_feature_extractor.general_feature_extractor-v7","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-117"},{"name":"features","node_id":"-117"}],"output_ports":[{"name":"data","node_id":"-117"}],"cacheable":true,"seq_num":12,"comment":"","comment_collapsed":true,"x":1069,"y":178},{"node_id":"-124","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"True","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-124"},{"name":"features","node_id":"-124"}],"output_ports":[{"name":"data","node_id":"-124"}],"cacheable":true,"seq_num":13,"comment":"","comment_collapsed":true,"x":1069,"y":269},{"node_id":"-135","module_id":"BigQuantSpace.chinaa_stock_filter.chinaa_stock_filter-v1","parameters":[{"name":"index_constituent_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%8150%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22displayValue%22%3A%22%E6%B2%AA%E6%B7%B1300%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81500%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81800%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81180%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81100%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22displayValue%22%3A%22%E4%B8%AD%E8%AF%811000%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"board_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E4%B8%8A%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22displayValue%22%3A%22%E6%B7%B1%E8%AF%81%E4%B8%BB%E6%9D%BF%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22displayValue%22%3A%22%E5%88%9B%E4%B8%9A%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22displayValue%22%3A%22%E7%A7%91%E5%88%9B%E6%9D%BF%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22displayValue%22%3A%22%E5%8C%97%E4%BA%A4%E6%89%80%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"industry_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22displayValue%22%3A%22%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%91%E9%97%B2%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22displayValue%22%3A%22%E4%BC%A0%E5%AA%92%2F%E4%BF%A1%E6%81%AF%E6%9C%8D%E5%8A%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22displayValue%22%3A%22%E5%85%AC%E7%94%A8%E4%BA%8B%E4%B8%9A%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22displayValue%22%3A%22%E5%86%9C%E6%9E%97%E7%89%A7%E6%B8%94%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%8C%96%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22displayValue%22%3A%22%E5%8C%BB%E8%8D%AF%E7%94%9F%E7%89%A9%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22displayValue%22%3A%22%E5%95%86%E4%B8%9A%E8%B4%B8%E6%98%93%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22displayValue%22%3A%22%E5%9B%BD%E9%98%B2%E5%86%9B%E5%B7%A5%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22displayValue%22%3A%22%E5%AE%B6%E7%94%A8%E7%94%B5%E5%99%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E6%9D%90%E6%96%99%2F%E5%BB%BA%E7%AD%91%E5%BB%BA%E6%9D%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22displayValue%22%3A%22%E5%BB%BA%E7%AD%91%E8%A3%85%E9%A5%B0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22displayValue%22%3A%22%E6%88%BF%E5%9C%B0%E4%BA%A7%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22displayValue%22%3A%22%E6%9C%89%E8%89%B2%E9%87%91%E5%B1%9E%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%9C%BA%E6%A2%B0%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E6%B1%BD%E8%BD%A6%2F%E4%BA%A4%E8%BF%90%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22displayValue%22%3A%22%E7%94%B5%E5%AD%90%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22displayValue%22%3A%22%E7%94%B5%E6%B0%94%E8%AE%BE%E5%A4%87%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22displayValue%22%3A%22%E7%BA%BA%E7%BB%87%E6%9C%8D%E8%A3%85%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22displayValue%22%3A%22%E7%BB%BC%E5%90%88%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22displayValue%22%3A%22%E8%AE%A1%E7%AE%97%E6%9C%BA%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22displayValue%22%3A%22%E8%BD%BB%E5%B7%A5%E5%88%B6%E9%80%A0%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22displayValue%22%3A%22%E9%80%9A%E4%BF%A1%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%87%87%E6%8E%98%22%2C%22displayValue%22%3A%22%E9%87%87%E6%8E%98%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%92%A2%E9%93%81%22%2C%22displayValue%22%3A%22%E9%92%A2%E9%93%81%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22displayValue%22%3A%22%E9%93%B6%E8%A1%8C%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%93%B6%E9%87%91%E8%9E%8D%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22displayValue%22%3A%22%E9%A3%9F%E5%93%81%E9%A5%AE%E6%96%99%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"st_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22displayValue%22%3A%22%E6%AD%A3%E5%B8%B8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22ST%22%2C%22displayValue%22%3A%22ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22*ST%22%2C%22displayValue%22%3A%22*ST%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22displayValue%22%3A%22%E6%9A%82%E5%81%9C%E4%B8%8A%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"delist_cond","value":"%7B%22enumItems%22%3A%5B%7B%22value%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22displayValue%22%3A%22%E5%85%A8%E9%83%A8%22%2C%22selected%22%3Atrue%7D%2C%7B%22value%22%3A%22%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%2C%7B%22value%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22displayValue%22%3A%22%E9%9D%9E%E9%80%80%E5%B8%82%22%2C%22selected%22%3Afalse%7D%5D%7D","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-135"}],"output_ports":[{"name":"data","node_id":"-135"},{"name":"left_data","node_id":"-135"}],"cacheable":true,"seq_num":17,"comment":"","comment_collapsed":true,"x":991,"y":386},{"node_id":"-234","module_id":"BigQuantSpace.trade.trade-v4","parameters":[{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"initialize","value":"# 回测引擎:初始化函数,只执行一次\ndef bigquant_run(context):\n # 加载预测数据\n context.ranker_prediction = context.options['data'].read_df()\n\n # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数\n context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))\n # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)\n # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只\n stock_count = 1\n # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]\n context.stock_weights = [1]\n # 设置每只股票占用的最大资金比例\n context.max_cash_per_instrument = 1\n context.options['hold_days'] = 5\n","type":"Literal","bound_global_parameter":null},{"name":"handle_data","value":"# 回测引擎:每日数据处理函数,每天执行一次\ndef bigquant_run(context, data):\n # 获取当前持仓\n positions = context.portfolio.positions\n today = data.current_dt.strftime('%Y-%m-%d')\n\n # 按日期过滤得到今日的预测数据\n ranker_prediction = context.ranker_prediction[\n context.ranker_prediction.date == today]\n\n # 获取涨停状态\n status_df = context.status_df[context.status_df.date == today]\n\n # 今天涨停持有,不涨停卖出\n for instrument, position in positions.items():\n symbol = instrument.symbol\n if symbol in status_df.instrument.values:\n # 检查是否涨停\n price_limit_status = status_df[status_df.instrument == symbol]['price_limit_status_0'].iloc[0]\n if price_limit_status != 3:\n # 不涨停,卖出\n context.order_target(instrument, 0)\n\n # 买入逻辑保持不变\n cash_for_buy = context.portfolio.cash\n buy_instruments = list(ranker_prediction.instrument)\n sell_instruments = [instrument.symbol for instrument in positions.keys()]\n to_buy = set(buy_instruments[:1]) - set(sell_instruments) \n\n # 如果没有持仓,则买入\n if len(positions) == 0:\n for instrument in to_buy:\n context.order_value(context.symbol(instrument), cash_for_buy)","type":"Literal","bound_global_parameter":null},{"name":"prepare","value":"def bigquant_run(context):\n\n\n # 获取st状态和涨跌停状态\n \n context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date, \n fields=['st_status_0','price_limit_status_0','price_limit_status_1'])\n","type":"Literal","bound_global_parameter":null},{"name":"before_trading_start","value":"def bigquant_run(context, data):\n pass \n# # 获取涨跌停状态数据\n# df_price_limit_status=context.status_df.set_index('date')\n# today=data.current_dt.strftime('%Y-%m-%d')\n# # 得到当前未完成订单\n# for orders in get_open_orders().values():\n# # 循环,撤销订单\n# for _order in orders:\n# ins=str(_order.sid.symbol)\n# try:\n# #判断一下如果当日涨停,则取消卖单\n# if df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:\n# cancel_order(_order)\n# print(today,'尾盘涨停取消卖单',ins) \n# except:\n# continue\n \n \n ","type":"Literal","bound_global_parameter":null},{"name":"volume_limit","value":"0.025","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_buy","value":"open","type":"Literal","bound_global_parameter":null},{"name":"order_price_field_sell","value":"close","type":"Literal","bound_global_parameter":null},{"name":"capital_base","value":"100000","type":"Literal","bound_global_parameter":null},{"name":"auto_cancel_non_tradable_orders","value":"True","type":"Literal","bound_global_parameter":null},{"name":"data_frequency","value":"daily","type":"Literal","bound_global_parameter":null},{"name":"price_type","value":"真实价格","type":"Literal","bound_global_parameter":null},{"name":"product_type","value":"股票","type":"Literal","bound_global_parameter":null},{"name":"plot_charts","value":"True","type":"Literal","bound_global_parameter":null},{"name":"backtest_only","value":"False","type":"Literal","bound_global_parameter":null},{"name":"benchmark","value":"000300.SHA","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-234"},{"name":"options_data","node_id":"-234"},{"name":"history_ds","node_id":"-234"},{"name":"benchmark_ds","node_id":"-234"},{"name":"trading_calendar","node_id":"-234"}],"output_ports":[{"name":"raw_perf","node_id":"-234"}],"cacheable":false,"seq_num":16,"comment":"","comment_collapsed":true,"x":593,"y":1082},{"node_id":"-138","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"price_limit_status_0==3&price_limit_status_1==3","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-138"}],"output_ports":[{"name":"data","node_id":"-138"},{"name":"left_data","node_id":"-138"}],"cacheable":true,"seq_num":14,"comment":"","comment_collapsed":true,"x":281,"y":536},{"node_id":"-139","module_id":"BigQuantSpace.filter.filter-v3","parameters":[{"name":"expr","value":"price_limit_status_0==3&price_limit_status_1==3","type":"Literal","bound_global_parameter":null},{"name":"output_left_data","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-139"}],"output_ports":[{"name":"data","node_id":"-139"},{"name":"left_data","node_id":"-139"}],"cacheable":true,"seq_num":15,"comment":"","comment_collapsed":true,"x":872,"y":514},{"node_id":"-189","module_id":"BigQuantSpace.dropnan.dropnan-v2","parameters":[],"input_ports":[{"name":"input_data","node_id":"-189"},{"name":"features","node_id":"-189"}],"output_ports":[{"name":"data","node_id":"-189"}],"cacheable":true,"seq_num":8,"comment":"","comment_collapsed":true,"x":200,"y":645},{"node_id":"-152","module_id":"BigQuantSpace.use_datasource.use_datasource-v2","parameters":[{"name":"datasource_id","value":"dragon_detail_CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"start_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"","type":"Literal","bound_global_parameter":null},{"name":"before_start_days","value":90,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"instruments","node_id":"-152"},{"name":"features","node_id":"-152"}],"output_ports":[{"name":"data","node_id":"-152"}],"cacheable":true,"seq_num":18,"comment":"","comment_collapsed":true,"x":-380,"y":97},{"node_id":"-160","module_id":"BigQuantSpace.derived_feature_extractor.derived_feature_extractor-v3","parameters":[{"name":"date_col","value":"date","type":"Literal","bound_global_parameter":null},{"name":"instrument_col","value":"instrument","type":"Literal","bound_global_parameter":null},{"name":"drop_na","value":"False","type":"Literal","bound_global_parameter":null},{"name":"remove_extra_columns","value":"False","type":"Literal","bound_global_parameter":null},{"name":"user_functions","value":"{}","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"input_data","node_id":"-160"},{"name":"features","node_id":"-160"}],"output_ports":[{"name":"data","node_id":"-160"}],"cacheable":true,"seq_num":19,"comment":"","comment_collapsed":true,"x":-225,"y":210},{"node_id":"-168","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"operatedept_code=operatedept_code_0\noperatedept_name\nreturn\nclose\nnet\ntype=type_0\noperatedept_code\n\n","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-168"}],"output_ports":[{"name":"data","node_id":"-168"}],"cacheable":true,"seq_num":20,"comment":"","comment_collapsed":true,"x":-131,"y":-101},{"node_id":"-173","module_id":"BigQuantSpace.join.join-v3","parameters":[{"name":"on","value":"date,instrument","type":"Literal","bound_global_parameter":null},{"name":"how","value":"inner","type":"Literal","bound_global_parameter":null},{"name":"sort","value":"False","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"data1","node_id":"-173"},{"name":"data2","node_id":"-173"}],"output_ports":[{"name":"data","node_id":"-173"}],"cacheable":true,"seq_num":21,"comment":"","comment_collapsed":true,"x":39,"y":456},{"node_id":"-183","module_id":"BigQuantSpace.instruments.instruments-v2","parameters":[{"name":"start_date","value":"2022-01-02","type":"Literal","bound_global_parameter":null},{"name":"end_date","value":"2023-12-30","type":"Literal","bound_global_parameter":null},{"name":"market","value":"CN_STOCK_A","type":"Literal","bound_global_parameter":null},{"name":"instrument_list","value":"","type":"Literal","bound_global_parameter":null},{"name":"max_count","value":0,"type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"rolling_conf","node_id":"-183"}],"output_ports":[{"name":"data","node_id":"-183"}],"cacheable":true,"seq_num":23,"comment":"","comment_collapsed":true,"x":-484,"y":-94},{"node_id":"-191","module_id":"BigQuantSpace.input_features.input_features-v1","parameters":[{"name":"features","value":"\n# #号开始的表示注释,注释需单独一行\n# 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征\ntype=type\noperatedept_code=operatedept_code\nzt=((type == '买入金额最大的前5名') & ((where(operatedept_code == '10428246', 1, 0)) + (where(operatedept_code == '10472087', 1, 0)) + (where(operatedept_code == '10484371', 1, 0)) + (where(operatedept_code == '10495103', 1, 0)) + (where(operatedept_code == '10708576', 1, 0))))","type":"Literal","bound_global_parameter":null}],"input_ports":[{"name":"features_ds","node_id":"-191"}],"output_ports":[{"name":"data","node_id":"-191"}],"cacheable":true,"seq_num":24,"comment":"","comment_collapsed":true,"x":-106,"y":48}],"node_layout":"<node_postions><node_position Node='-6' Position='594,-80,200,200'/><node_position Node='-10' Position='138,12,200,200'/><node_position Node='-19' Position='559,167,200,200'/><node_position Node='-26' Position='559,267,200,200'/><node_position Node='-34' Position='155,176,200,200'/><node_position Node='-49' Position='291,361,200,200'/><node_position Node='-56' Position='170,288,200,200'/><node_position Node='-88' Position='376,788,200,200'/><node_position Node='-104' Position='685,907,200,200'/><node_position Node='-108' Position='1013,23,200,200'/><node_position Node='-117' Position='1069,178,200,200'/><node_position Node='-124' Position='1069,269,200,200'/><node_position Node='-135' Position='991,386,200,200'/><node_position Node='-234' Position='593,1082,200,200'/><node_position Node='-138' Position='281,536,200,200'/><node_position Node='-139' Position='872,514,200,200'/><node_position Node='-189' Position='200,645,200,200'/><node_position Node='-152' Position='-380,97,200,200'/><node_position Node='-160' Position='-225,210,200,200'/><node_position Node='-168' Position='-131,-101,200,200'/><node_position Node='-173' Position='39,456,200,200'/><node_position Node='-183' Position='-484,-94,200,200'/><node_position Node='-191' Position='-106,48,200,200'/></node_postions>"},"nodes_readonly":false,"studio_version":"v2"}
    In [3]:
    # 本代码由可视化策略环境自动生成 2023年12月11日 11:21
    # 本代码单元只能在可视化模式下编辑。您也可以拷贝代码,粘贴到新建的代码单元或者策略,然后修改。
     
    # 显式导入 BigQuant 相关 SDK 模块
    from bigdatasource.api import DataSource
    from bigdata.api.datareader import D
    from biglearning.api import M
    from biglearning.api import tools as T
    from biglearning.module2.common.data import Outputs
     
    import pandas as pd
    import numpy as np
    import math
    import warnings
    import datetime
     
    from zipline.finance.commission import PerOrder
    from zipline.api import get_open_orders
    from zipline.api import symbol
     
    from bigtrader.sdk import *
    from bigtrader.utils.my_collections import NumPyDeque
    from bigtrader.constant import OrderType
    from bigtrader.constant import Direction
    
    # <aistudiograph>
    
    # @param(id="m16", name="initialize")
    # 回测引擎:初始化函数,只执行一次
    def m16_initialize_bigquant_run(context):
        # 加载预测数据
        context.ranker_prediction = context.options['data'].read_df()
    
        # 系统已经设置了默认的交易手续费和滑点,要修改手续费可使用如下函数
        context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))
        # 预测数据,通过options传入进来,使用 read_df 函数,加载到内存 (DataFrame)
        # 设置买入的股票数量,这里买入预测股票列表排名靠前的5只
        stock_count = 1
        # 每只的股票的权重,如下的权重分配会使得靠前的股票分配多一点的资金,[0.339160, 0.213986, 0.169580, ..]
        context.stock_weights = [1]
        # 设置每只股票占用的最大资金比例
        context.max_cash_per_instrument = 1
        context.options['hold_days'] = 5
    
    # @param(id="m16", name="handle_data")
    # 回测引擎:每日数据处理函数,每天执行一次
    def m16_handle_data_bigquant_run(context, data):
        # 获取当前持仓
        positions = context.portfolio.positions
        today = data.current_dt.strftime('%Y-%m-%d')
    
        # 按日期过滤得到今日的预测数据
        ranker_prediction = context.ranker_prediction[
            context.ranker_prediction.date == today]
    
        # 获取涨停状态
        status_df = context.status_df[context.status_df.date == today]
    
        # 今天涨停持有,不涨停卖出
        for instrument, position in positions.items():
            symbol = instrument.symbol
            if symbol in status_df.instrument.values:
                # 检查是否涨停
                price_limit_status = status_df[status_df.instrument == symbol]['price_limit_status_0'].iloc[0]
                if price_limit_status != 3:
                    # 不涨停,卖出
                    context.order_target(instrument, 0)
    
        # 买入逻辑保持不变
        cash_for_buy = context.portfolio.cash
        buy_instruments = list(ranker_prediction.instrument)
        sell_instruments = [instrument.symbol for instrument in positions.keys()]
        to_buy = set(buy_instruments[:1]) - set(sell_instruments) 
    
        # 如果没有持仓,则买入
        if len(positions) == 0:
            for instrument in to_buy:
                context.order_value(context.symbol(instrument), cash_for_buy)
    # @param(id="m16", name="prepare")
    def m16_prepare_bigquant_run(context):
    
    
         # 获取st状态和涨跌停状态
        
        context.status_df = D.features(instruments =context.instruments,start_date = context.start_date, end_date = context.end_date, 
                               fields=['st_status_0','price_limit_status_0','price_limit_status_1'])
    
    # @param(id="m16", name="before_trading_start")
    def m16_before_trading_start_bigquant_run(context, data):
        pass     
    #     # 获取涨跌停状态数据
    #     df_price_limit_status=context.status_df.set_index('date')
    #     today=data.current_dt.strftime('%Y-%m-%d')
    #     # 得到当前未完成订单
    #     for orders in get_open_orders().values():
    #         # 循环,撤销订单
    #         for _order in orders:
    #             ins=str(_order.sid.symbol)
    #             try:
    #                 #判断一下如果当日涨停,则取消卖单
    #                 if  df_price_limit_status[df_price_limit_status.instrument==ins].price_limit_status_0.loc[today]>2 and _order.amount<0:
    #                     cancel_order(_order)
    #                     print(today,'尾盘涨停取消卖单',ins) 
    #             except:
    #                 continue
      
        
        
    
    # @module(position="594,-80", comment='', comment_collapsed=True)
    m1 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    rank_return_90<2
    rank_return_5<2
    rank_return_20<2
    rank_return_10<2
    price_limit_status_0
    price_limit_status_1
    price_limit_status_2
    price_limit_status_3
    price_limit_status_4
    price_limit_status_5
    price_limit_status_6
    price_limit_status_7
    price_limit_status_8
    price_limit_status_9
    price_limit_status_10
    close_0<30
    close_0<10
    market_cap_float_0<28000000000
    market_cap_float_0<10000000000
    #avg_turn_5
    #avg_turn_10
    #turn_0
    amount_0
    avg_amount_5
    #mf_net_pct_xl_0
    #amount_0/avg_amount_5>4
    #判断放量
    #cj=turn_0/turn_1>3&amount_0>3000000000
    #turn_0/turn_1>3 and amount_0>3000000000
    # 计算过去n个交易日的复权收盘价与换手率的Pearson相关系数
    #level_0
    turn_0
    close_0
    correlation(close_0, turn_0, 10)
    #10日涨停次数
    s2=sum(price_limit_status_0==3, 15)
    #5日涨停次数
    s3=sum(price_limit_status_0==3, 5)
    #涨停排名
    s=rank(sum(where(price_limit_status_0 == 3, 1, 0), 5))
    #连板次数排名
    s1=rank(sum(where(price_limit_status_0 == 3, 1, 0), 15))
    #成交额小于10亿
    amount_0<1000000000
    industry_sw_level1_0
    myrank=rank_fs_roe_ttm_0+rank_fs_net_profit_qoq_0-rank_pb_lf_0
    #超大单净额
    mf_net_amount_xl_0
    #15日平均换手率除以当日换手率,用于衡量股票的流动性和热度。
    avg_turn_10/turn_0 
    
    #表示相对收益率
    #relative_ret=stockret-bmret 
    #表示5日相对收益率,是指过去5个交易日的相对收益率之和,用于衡量股票的短期表现。
    #relative_ret_5=sum(relative_ret,5)
    """
    )
    
    # @module(position="138,12", comment='', comment_collapsed=True)
    m2 = M.instruments.v2(
        start_date='2019-01-01',
        end_date='2022-01-01',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    # @module(position="559,167", comment='', comment_collapsed=True)
    m3 = M.general_feature_extractor.v7(
        instruments=m2.data,
        features=m1.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    # @module(position="559,267", comment='', comment_collapsed=True)
    m4 = M.derived_feature_extractor.v3(
        input_data=m3.data,
        features=m1.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    # @module(position="155,176", comment='', comment_collapsed=True)
    m5 = M.advanced_auto_labeler.v2(
        instruments=m2.data,
        label_expr="""# #号开始的表示注释
    # 0. 每行一个,顺序执行,从第二个开始,可以使用label字段
    # 1. 可用数据字段见 https://bigquant.com/docs/develop/datasource/deprecated/history_data.html
    #   添加benchmark_前缀,可使用对应的benchmark数据
    # 2. 可用操作符和函数见 `表达式引擎 <https://bigquant.com/docs/develop/bigexpr/usage.html>`_
    
    # 计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格)
    shift(close, -2) / shift(open, -1)
    
    # 极值处理:用1%和99%分位的值做clip
    clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))
    
    # 将分数映射到分类,这里使用20个分类
    all_wbins(label, 20)
    
    #过滤掉一字涨停的情况 (设置label为NaN,在后续处理和训练中会忽略NaN的label)
    where(shift(high, -1) == shift(low, -1), NaN, label)
    
    """,
        start_date='',
        end_date='',
        benchmark='000300.SHA',
        drop_na_label=True,
        cast_label_int=True,
        user_functions={}
    )
    
    # @module(position="170,288", comment='', comment_collapsed=True)
    m7 = M.chinaa_stock_filter.v1(
        input_data=m5.data,
        index_constituent_cond=['全部'],
        board_cond=['上证主板', '深证主板'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['全部'],
        output_left_data=False
    )
    
    # @module(position="291,361", comment='', comment_collapsed=True)
    m6 = M.join.v3(
        data1=m7.data,
        data2=m4.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    # @module(position="1013,23", comment='', comment_collapsed=True)
    m11 = M.instruments.v2(
        start_date=T.live_run_param('trading_date', '2022-01-02'),
        end_date=T.live_run_param('trading_date', '2023-12-30'),
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    # @module(position="1069,178", comment='', comment_collapsed=True)
    m12 = M.general_feature_extractor.v7(
        instruments=m11.data,
        features=m1.data,
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    # @module(position="1069,269", comment='', comment_collapsed=True)
    m13 = M.derived_feature_extractor.v3(
        input_data=m12.data,
        features=m1.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=True,
        user_functions={}
    )
    
    # @module(position="991,386", comment='', comment_collapsed=True)
    m17 = M.chinaa_stock_filter.v1(
        input_data=m13.data,
        index_constituent_cond=['全部'],
        board_cond=['上证主板', '深证主板'],
        industry_cond=['全部'],
        st_cond=['正常'],
        delist_cond=['全部'],
        output_left_data=False
    )
    
    # @module(position="872,514", comment='', comment_collapsed=True)
    m15 = M.filter.v3(
        input_data=m17.data,
        expr='price_limit_status_0==3&price_limit_status_1==3',
        output_left_data=False
    )
    
    # @module(position="-131,-101", comment='', comment_collapsed=True)
    m20 = M.input_features.v1(
        features="""operatedept_code=operatedept_code_0
    operatedept_name
    return
    close
    net
    type=type_0
    operatedept_code
    
    """
    )
    
    # @module(position="-484,-94", comment='', comment_collapsed=True)
    m23 = M.instruments.v2(
        start_date='2022-01-02',
        end_date='2023-12-30',
        market='CN_STOCK_A',
        instrument_list='',
        max_count=0
    )
    
    # @module(position="-380,97", comment='', comment_collapsed=True)
    m18 = M.use_datasource.v2(
        instruments=m23.data,
        features=m20.data,
        datasource_id='dragon_detail_CN_STOCK_A',
        start_date='',
        end_date='',
        before_start_days=90
    )
    
    # @module(position="-106,48", comment='', comment_collapsed=True)
    m24 = M.input_features.v1(
        features="""
    # #号开始的表示注释,注释需单独一行
    # 多个特征,每行一个,可以包含基础特征和衍生特征,特征须为本平台特征
    type=type
    operatedept_code=operatedept_code
    zt=((type == '买入金额最大的前5名') & ((where(operatedept_code == '10428246', 1, 0)) + (where(operatedept_code == '10472087', 1, 0)) + (where(operatedept_code == '10484371', 1, 0)) + (where(operatedept_code == '10495103', 1, 0)) + (where(operatedept_code == '10708576', 1, 0))))"""
    )
    
    # @module(position="-225,210", comment='', comment_collapsed=True)
    m19 = M.derived_feature_extractor.v3(
        input_data=m18.data,
        features=m24.data,
        date_col='date',
        instrument_col='instrument',
        drop_na=False,
        remove_extra_columns=False,
        user_functions={}
    )
    
    # @module(position="39,456", comment='', comment_collapsed=True)
    m21 = M.join.v3(
        data1=m19.data,
        data2=m6.data,
        on='date,instrument',
        how='inner',
        sort=False
    )
    
    # @module(position="281,536", comment='', comment_collapsed=True)
    m14 = M.filter.v3(
        input_data=m21.data,
        expr='price_limit_status_0==3&price_limit_status_1==3',
        output_left_data=False
    )
    
    # @module(position="200,645", comment='', comment_collapsed=True)
    m8 = M.dropnan.v2(
        input_data=m14.data
    )
    
    # @module(position="376,788", comment='', comment_collapsed=True)
    m9 = M.stock_ranker_train.v6(
        training_ds=m8.data,
        features=m1.data,
        learning_algorithm='排序',
        number_of_leaves=30,
        minimum_docs_per_leaf=1000,
        number_of_trees=20,
        learning_rate=0.4,
        max_bins=1023,
        feature_fraction=1,
        data_row_fraction=1,
        plot_charts=True,
        ndcg_discount_base=1,
        m_lazy_run=False
    )
    
    # @module(position="685,907", comment='', comment_collapsed=True)
    m10 = M.stock_ranker_predict.v5(
        model=m9.model,
        data=m15.data,
        m_lazy_run=False
    )
    
    # @module(position="593,1082", comment='', comment_collapsed=True)
    m16 = M.trade.v4(
        instruments=m11.data,
        options_data=m10.predictions,
        start_date='',
        end_date='',
        initialize=m16_initialize_bigquant_run,
        handle_data=m16_handle_data_bigquant_run,
        prepare=m16_prepare_bigquant_run,
        before_trading_start=m16_before_trading_start_bigquant_run,
        volume_limit=0.025,
        order_price_field_buy='open',
        order_price_field_sell='close',
        capital_base=100000,
        auto_cancel_non_tradable_orders=True,
        data_frequency='daily',
        price_type='真实价格',
        product_type='股票',
        plot_charts=True,
        backtest_only=False,
        benchmark='000300.SHA'
    )
    # </aistudiograph>
    
    ---------------------------------------------------------------------------
    UnpicklingError                           Traceback (most recent call last)
    Cell In[3], line 203
        192 m4 = M.derived_feature_extractor.v3(
        193     input_data=m3.data,
        194     features=m1.data,
       (...)
        199     user_functions={}
        200 )
        202 # @module(position="554.5902404785156,387.44156646728516", comment='', comment_collapsed=True)
    --> 203 m22 = M.factorlens.v2(
        204     features=m4.data,
        205     title='因子分析: {factor_name}',
        206     start_date='2019-01-01',
        207     end_date='2019-12-31',
        208     rebalance_period=22,
        209     delay_rebalance_days=0,
        210     rebalance_price='close_0',
        211     stock_pool='全市场',
        212     quantile_count=5,
        213     commission_rate=0.0016,
        214     returns_calculation_method='累乘',
        215     benchmark='无',
        216     drop_new_stocks=60,
        217     drop_price_limit_stocks=False,
        218     drop_st_stocks=False,
        219     drop_suspended_stocks=False,
        220     cutoutliers=True,
        221     normalization=True,
        222     neutralization=[],
        223     metrics=['因子表现概览', '因子分布', '因子行业分布', '因子市值分布', 'IC分析', '买入信号重合分析', '因子估值分析', '因子拥挤度分析', '因子值最大/最小股票', '表达式因子值', '多因子相关性分析'],
        224     factor_coverage=0.5,
        225     user_data_merge='left'
        226 )
        228 # @module(position="155,176", comment='', comment_collapsed=True)
        229 m5 = M.advanced_auto_labeler.v2(
        230     instruments=m2.data,
        231     label_expr="""# #号开始的表示注释
       (...)
        255     user_functions={}
        256 )
    
    File module2/common/modulemanagerv2.py:88, in biglearning.module2.common.modulemanagerv2.BigQuantModuleVersion.__call__()
    
    File module2/common/moduleinvoker.py:370, in biglearning.module2.common.moduleinvoker.module_invoke()
    
    File module2/common/moduleinvoker.py:292, in biglearning.module2.common.moduleinvoker._invoke_with_cache()
    
    File module2/common/moduleinvoker.py:253, in biglearning.module2.common.moduleinvoker._invoke_with_cache()
    
    File module2/common/moduleinvoker.py:210, in biglearning.module2.common.moduleinvoker._module_run()
    
    File module2/modules/factorlens/v2/__init__.py:220, in biglearning.module2.modules.factorlens.v2.__init__.bigquant_run()
    
    File module2/common/utils.py:81, in biglearning.module2.common.utils.smart_list()
    
    File module2/common/utils.py:50, in biglearning.module2.common.utils.smart_object()
    
    File /var/app/enabled/bigdatasource/api/v6/__init__.py:70, in read_pickle(self, use_dill, return_use_dill)
    
    File /var/app/enabled/bigdatasource/impl/dsimpl/pkl.py:50, in read_pickle(id, version, use_dill, return_use_dill)
    
    UnpicklingError: invalid load key, 'H'.
    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m19, column_name="date")
    
    type net date sell reason operatedept_code instrument close operatedept_name buy
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:10

    缺失值:0

    唯一值:2

    In [ ]:
    m19.data.read()
    
    Out[ ]:
    type net date sell reason operatedept_code instrument close operatedept_name buy return
    0 卖出金额最大的前5名 -12124152.00 2021-12-28 14322851.00 日跌幅偏离值达到7%的前5只证券 10088113 000665.SZA 6.26 中国国际金融股份有限公司上海分公司 2198699.00 None
    1 卖出金额最大的前5名 -15547779.32 2021-12-28 15547779.32 日跌幅偏离值达到7%的前5只证券 10442978 000665.SZA 6.26 华鑫证券有限责任公司江苏分公司 0.00 None
    2 卖出金额最大的前5名 -32449164.68 2021-12-28 33655175.68 连续三个交易日内,跌幅偏离值累计达到20%的证券 10586323 000665.SZA 6.26 中信证券股份有限公司宁波和义路证券营业部 1206011.00 None
    3 买入金额最大的前5名 17122248.15 2021-12-28 21613578.60 连续三个交易日内,跌幅偏离值累计达到20%的证券 10472087 000665.SZA 6.26 东方财富证券股份有限公司拉萨东环路第二证券营业部 38735826.75 None
    4 卖出金额最大的前5名 -168588.73 2021-12-28 16011448.73 日跌幅偏离值达到7%的前5只证券 10428246 000665.SZA 6.26 东方财富证券股份有限公司拉萨东环路第一证券营业部 15842860.00 None
    ... ... ... ... ... ... ... ... ... ... ... ...
    300412 卖出金额最大的前5名 -4620529.07 2023-12-08 4945459.26 当日换手率达到20%的前5只股票 10174510 873152.BJA 12.00 平安证券股份有限公司广西分公司 324930.19 None
    300413 卖出金额最大的前5名 -1428626.34 2023-12-08 4913562.93 当日换手率达到20%的前5只股票 10472087 873152.BJA 12.00 东方财富证券股份有限公司拉萨东环路第二证券营业部 3484936.59 None
    300414 卖出金额最大的前5名 -98887.31 2023-12-08 3990930.10 当日换手率达到20%的前5只股票 10495103 873152.BJA 12.00 东方财富证券股份有限公司拉萨团结路第二证券营业部 3892042.79 None
    300415 卖出金额最大的前5名 -3567388.55 2023-12-08 3567388.55 当日换手率达到20%的前5只股票 10129981 873152.BJA 12.00 国信证券股份有限公司宁波宁穿路证券营业部 0.00 None
    300416 卖出金额最大的前5名 -501581.21 2023-12-08 3537431.86 当日换手率达到20%的前5只股票 10428246 873152.BJA 12.00 东方财富证券股份有限公司拉萨东环路第一证券营业部 3035850.65 None

    300417 rows × 11 columns

    In [ ]:
    
    
    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m14, column_name="date")
    
    amount_0 avg_amount_5 close_0 date instrument market_cap_float_0 price_limit_status_0 price_limit_status_1 price_limit_status_10 price_limit_status_2 price_limit_status_3 price_limit_status_4 price_limit_status_5 price_limit_status_6 price_limit_status_7 price_limit_status_8 price_limit_status_9 rank_return_10 rank_return_20 rank_return_5 rank_return_90 turn_0 rank_return_90<2 rank_return_5<2 rank_return_20<2 rank_return_10<2 close_0<30 close_0<10 market_cap_float_0<28000000000 market_cap_float_0<10000000000 correlation(close_0, turn_0, 10) s2 s3 s s1 amount_0<1000000000 m:amount m:close m:low m:high m:open label
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:42

    缺失值:0

    唯一值:491

    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m19, column_name="date")
    
    type net date sell reason operatedept_code instrument close operatedept_name buy return
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:11

    缺失值:0

    唯一值:2

    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m19, column_name="date")
    
    type net date sell reason operatedept_code instrument close operatedept_name buy return
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:11

    缺失值:0

    唯一值:2

    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m14, column_name="date")
    
    amount_0 avg_amount_5 close_0 date instrument market_cap_float_0 price_limit_status_0 price_limit_status_1 price_limit_status_10 price_limit_status_2 price_limit_status_3 price_limit_status_4 price_limit_status_5 price_limit_status_6 price_limit_status_7 price_limit_status_8 price_limit_status_9 rank_return_10 rank_return_20 rank_return_5 rank_return_90 turn_0 rank_return_90<2 rank_return_5<2 rank_return_20<2 rank_return_10<2 close_0<30 close_0<10 market_cap_float_0<28000000000 market_cap_float_0<10000000000 correlation(close_0, turn_0, 10) s2 s3 s s1 amount_0<1000000000 m:amount m:close m:low m:high m:open label
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:42

    缺失值:0

    唯一值:491

    In [ ]:
    m9.model_id
    
    Out[ ]:
    '70adc104976211ee8e7eaa055e4d0bac'
    In [ ]:
    m9.plot_model()
    
    Out[ ]:
    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m4, column_name="date")
    
    amount_0 avg_amount_5 close_0 date instrument market_cap_float_0 price_limit_status_0 price_limit_status_1 price_limit_status_10 price_limit_status_2 price_limit_status_3 price_limit_status_4 price_limit_status_5 price_limit_status_6 price_limit_status_7 price_limit_status_8 price_limit_status_9 rank_return_10 rank_return_20 rank_return_5 rank_return_90 turn_0 rank_return_90<2 rank_return_5<2 rank_return_20<2 rank_return_10<2 close_0<30 close_0<10 market_cap_float_0<28000000000 market_cap_float_0<10000000000 correlation(close_0, turn_0, 10) s2 s3 s s1 amount_0<1000000000
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:36

    缺失值:0

    唯一值:60

    In [ ]:
    
    
    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m9, column_name="date")
    
    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m6, column_name="date")
    
    amount_0 avg_amount_5 close_0 date instrument market_cap_float_0 price_limit_status_0 price_limit_status_1 price_limit_status_10 price_limit_status_2 price_limit_status_3 price_limit_status_4 price_limit_status_5 price_limit_status_6 price_limit_status_7 price_limit_status_8 price_limit_status_9 rank_return_10 rank_return_20 rank_return_5 rank_return_90 turn_0 rank_return_90<2 rank_return_5<2 rank_return_20<2 rank_return_10<2 close_0<30 close_0<10 market_cap_float_0<28000000000 market_cap_float_0<10000000000 correlation(close_0, turn_0, 10) s2 s3 s s1 amount_0<1000000000 m:amount m:close m:low m:high m:open label
    Loading... (need help?)

    date列数据统计值

    行数:1000

    列数:42

    缺失值:0

    唯一值:728

    In [ ]:
    from biglearning.api.tools import view_model_result 
    
    # 查看模块运行结果,通过column_name指定需要统计的字段 
    view_model_result(m10, column_name="date")
    
    In [ ]:
    m10.predictions.read()
    
    Out[ ]:
    date instrument score position
    0 2021-10-08 603978.SHA 0.256047 1
    1 2021-10-08 605162.SHA 0.158742 2
    2 2021-10-08 600268.SHA 0.061198 3
    3 2021-10-08 001217.SZA -0.058698 4
    4 2021-10-08 600071.SHA -0.064584 5
    ... ... ... ... ...
    6182 2023-12-08 603038.SHA 0.001042 5
    6183 2023-12-08 603189.SHA -0.005783 6
    6184 2023-12-08 603938.SHA -0.034713 7
    6185 2023-12-08 603660.SHA -0.097266 8
    6186 2023-12-08 002962.SZA -0.162609 9

    6187 rows × 4 columns